Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells – A review

International Journal of Hydrogen Energy - Tập 44 Số 14 - Trang 7448-7493 - 2019
San Ping Jiang1
1Fuels and Energy Technology Institute & Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wachsman, 2012, Role of solid oxide fuel cells in a balanced energy strategy, Energy Environ Sci, 5, 5498, 10.1039/C1EE02445K

Wang, 2017, Prospects of fuel cell technologies, National Science Review, 4, 163, 10.1093/nsr/nww099

Jiang, 2008, Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review, J Mater Sci, 43, 6799, 10.1007/s10853-008-2966-6

Jiang, 2011, Chapter 5. Fuel cells: advances and challenges, 179

Brett, 2008, Intermediate temperature solid oxide fuel cells, Chem Soc Rev, 37, 1568, 10.1039/b612060c

Jiang, 2002, A comparison of O-2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O-3 electrodes, Solid State Ionics, 146, 1, 10.1016/S0167-2738(01)00997-3

Esquirol, 2004, Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate-temperature SOFCs, J Electrochem Soc, 151, A1847, 10.1149/1.1799391

Chater, 1992, Development of a novel sims technique for oxygen self-diffusion and surface exchange coefficient measurements in oxides of high diffusivity, Solid State Ionics, 53–6, 859, 10.1016/0167-2738(92)90266-R

Jiang, 2009, Cathodes, 131

Chen, 2015, Advances in cathode materials for solid oxide fuel cells: complex oxides without alkaline earth metal elements, Adv Energy Mater, 5, 10.1002/aenm.201500537

Baumann, 2006, Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-delta model electrodes, Solid State Ionics, 177, 1071, 10.1016/j.ssi.2006.02.045

Marinha, 2011, Microstructural 3D reconstruction and performance evaluation of LSCF cathodes obtained by electrostatic spray deposition, Chem Mater, 23, 5340, 10.1021/cm2016998

Lane, 1999, Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-delta, Solid State Ionics, 121, 201, 10.1016/S0167-2738(99)00014-4

Bae, 1998, Properties of La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) double layer cathodes on gadolinium-doped cerium oxide (CGO) electrolytes - I. Role of SiO2, Solid State Ionics, 106, 247, 10.1016/S0167-2738(97)00428-1

Lu, 2010, Electrochemical performance and stability of the cathode for solid oxide fuel cells IV. On the ohmic loss in anode-supported button cells with LSM or LSCF cathodes, J Electrochem Soc, 157, B964, 10.1149/1.3417064

Tietz, 2006, Performance of LSCF cathodes in cell tests, J Power Sources, 156, 20, 10.1016/j.jpowsour.2005.08.015

Hong, 2012, Oxygen surface exchange properties of La0.6Sr0.4Co0.8Fe0.2O3-(delta) coated with SmxCe1-O-x(2)-(delta), J Power Sources, 218, 254, 10.1016/j.jpowsour.2012.07.004

Jamil, 2018, A novel single-step fabrication anode/electrolyte/cathode triple-layer hollow fiber micro-tubular SOFC, Int J Hydrog Energy, 43, 18509, 10.1016/j.ijhydene.2018.08.010

Teraoka, 1988, Mixed ionic-electronic conductivity of LA1-XSRXCO1-YFEYO3-DELTA perovskite-type oxides, Mater Res Bull, 23, 51, 10.1016/0025-5408(88)90224-3

Carter, 1992, Oxygen-transport in selected nonstoichiometric perovskite-structure oxides, Solid State Ionics, 53–6, 597, 10.1016/0167-2738(92)90435-R

Katsuki, 2003, High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3−δ oxygen nonstoichiometry and chemical diffusion constant, Solid State Ionics, 156, 453, 10.1016/S0167-2738(02)00733-6

De Souza, 2000, A SIMS study of oxygen tracer diffusion and surface exchange in La0.8Sr0.2MnO3+[delta], Mater Lett, 43, 43, 10.1016/S0167-577X(99)00228-1

Kostogloudis, 1999, Properties of A-site-deficient La0.6Sr0.4Co0.2Fe0.8O3-delta-based perovskite oxides, Solid State Ionics, 126, 143, 10.1016/S0167-2738(99)00230-1

Kharton, 2001, Ceria-based materials for solid oxide fuel cells, J Mater Sci, 36, 1105, 10.1023/A:1004817506146

Hwang, 2005, Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs, J Power Sources, 145, 243, 10.1016/j.jpowsour.2005.02.063

Chen, 2016, Review-materials degradation of solid oxide electrolysis cells, J Electrochem Soc, 163, F3070, 10.1149/2.0101611jes

Zhan, 2009, Syngas production by coelectrolysis of CO2/H2O: the basis for a renewable energy cycle, Energy Fuels, 23, 3089, 10.1021/ef900111f

Leo, 2009, Development of mixed conducting membranes for clean coal energy delivery, Int J Greenh Gas Contr, 3, 357, 10.1016/j.ijggc.2008.11.003

Jacobson, 2010, Materials for solid oxide fuel cells, Chem Mater, 22, 660, 10.1021/cm902640j

Tsipis, 2008, Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review, J Solid State Electrochem, 12, 1367, 10.1007/s10008-008-0611-6

Pelosato, 2015, Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: a brief review, J Power Sources, 298, 46, 10.1016/j.jpowsour.2015.08.034

Vohs, 2009, High-performance SOFC cathodes prepared by infiltration, Adv Mater, 21, 943, 10.1002/adma.200802428

Sun, 2010, Cathode materials for solid oxide fuel cells: a review, J Solid State Electrochem, 14, 1125, 10.1007/s10008-009-0932-0

Jun, 2016, Perovskite as a cathode material: a review of its role in solid-oxide fuel cell technology, ChemElectroChem, 3, 511, 10.1002/celc.201500382

Abdalla, 2018, Nanomaterials for solid oxide fuel cells: a review, Renew Sustain Energy Rev, 82, 353, 10.1016/j.rser.2017.09.046

Lessing, 2007, A review of sealing technologies applicable to solid oxide electrolysis cells, J Mater Sci, 42, 3465, 10.1007/s10853-006-0409-9

Zhou, 2009, Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3-delta-based cathodes for intermediate-temperature solid-oxide fuel cells: a review, J Power Sources, 192, 231, 10.1016/j.jpowsour.2009.02.069

Hao, 2017, Fabrication of nanoscale yttria stabilized zirconia for solid oxide fuel cell, Int J Hydrog Energy, 42, 29949, 10.1016/j.ijhydene.2017.08.143

da Silva, 2017, Novel materials for solid oxide fuel cell technologies: a literature review, Int J Hydrog Energy, 42, 26020, 10.1016/j.ijhydene.2017.08.105

Mahmud, 2017, Challenges in fabricating planar solid oxide fuel cells: a review, Renew Sustain Energy Rev, 72, 105, 10.1016/j.rser.2017.01.019

Mah, 2017, Metallic interconnects for solid oxide fuel cell: a review on protective coating and deposition techniques, Int J Hydrog Energy, 42, 9219, 10.1016/j.ijhydene.2016.03.195

Shao, 2012, Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells, Prog Mater Sci, 57, 804, 10.1016/j.pmatsci.2011.08.002

Richter, 2009, Materials design for perovskite SOFC cathodes, Monatsh Chem, 140, 985, 10.1007/s00706-009-0153-3

Tai, 1995, Structure and electrical-properties of La1-Xsrxco1-Yfeyo3 .2. The system La1-Xsrxco0.2fe0.8o3, Solid State Ionics, 76, 273, 10.1016/0167-2738(94)00245-N

Teraoka, 1985, Oxygen permeation through perovskite-type oxides, Chem Lett, 1743, 10.1246/cl.1985.1743

Prado, 2001, Structural stability and oxygen permeation properties of Sr3-xLaxFe2-yCoyO7-delta (0 <= x <= 0.3 and 0 <= y <= 1.0), J Electrochem Soc, 148, J7, 10.1149/1.1354605

Tai, 1995, Structure and electrical-properties of La1-Xsrxco1-Yfeyo3 .1. The system La0.8sr0.2co1-Yfeyo3, Solid State Ionics, 76, 259, 10.1016/0167-2738(94)00244-M

Chou, 2000, Mechanical properties of La1-xSrxCo0.2Fe0.8O3 mixed-conducting perovskites made by the combustion synthesis technique, J Am Ceram Soc, 83, 1457, 10.1111/j.1151-2916.2000.tb01410.x

Hashimoto, 2011, Thermal and chemical lattice expansibility of La0.6Sr0.4Co1-yFeyO3-delta (y=0.2, 0.4, 0.6 and 0.8), Solid State Ionics, 186, 37, 10.1016/j.ssi.2011.01.014

Itoh, 2018, Local structure change around Co and Fe ions in (La0.6Sr0.4)(Co0.2Fe0.8) O3-delta as revealed by in-situ X-ray absorption spectroscopy and first-principles calculation, J Solid State Chem, 258, 702, 10.1016/j.jssc.2017.11.034

Mantzavinos, 2000, Oxygen stoichiometries in La1-xSrxCo1-yFeyO3-delta perovskites at reduced oxygen partial pressures, Solid State Ionics, 134, 103, 10.1016/S0167-2738(00)00718-9

Stevenson, 1996, Electrochemical properties of mixed conducting perovskites La(1-x)M(x)Co(1-y)Fe(y)O(3-delta) (M=Sr,Ba,Ca), J Electrochem Soc, 143, 2722, 10.1149/1.1837098

Bouwmeester, 2004, Oxygen transport in La0.6Sr0.4Co1-yFeyO3-delta, J Solid State Electrochem, 8, 599, 10.1007/s10008-003-0488-3

Orikasa, 2011, An X-ray absorption spectroscopic study on mixed conductive La0.6Sr0.4Co0.8Fe0.2O3-delta cathodes. I. Electrical conductivity and electronic structure, Phys Chem Chem Phys, 13, 16637, 10.1039/c1cp20982e

Jun, 2013, Thermodynamic and electrical properties of Ba0.5Sr0.5Co0.8Fe0.2O3-delta and La0.6Sr0.4Co0.2Fe0.8O3-delta for intermediate-temperature solid oxide fuel cells, Electrochim Acta, 89, 372, 10.1016/j.electacta.2012.11.002

Mineshige, 2005, Introduction of A-site deficiency into La0.6Sr0.4Co0.2Fe0.8O3-delta and its effect on structure and conductivity, Solid State Ionics, 176, 1145, 10.1016/j.ssi.2004.11.021

Lankhorst, 1997, Thermodynamic quantities and defect structure of La0.6Sr0.4Co1-yFeyO3-delta(y=0-0.6) from high-temperature coulometric titration experiments, J Solid State Chem, 130, 302, 10.1006/jssc.1997.7378

Mizusaki, 1987, Thermodynamic quantities and defect equilibrium in the perovskite-type oxide solid-solution La1-Xsrxfeo3-delta, J Solid State Chem, 67, 1, 10.1016/0022-4596(87)90331-8

Lankhorst, 1997, Determination of oxygen nonstoichiometry and diffusivity in mixed conducting oxides by oxygen coulometric titration .2. Oxygen nonstoichiometry and defect model for La0.8Sr0.2CoO3-delta, J Electrochem Soc, 144, 1268, 10.1149/1.1837581

Mineshige, 1999, Metal-insulator transition and crystal structure of La1-xSrxCoO3 as functions of Sr-content, temperature, and oxygen partial pressure, J Solid State Chem, 142, 374, 10.1006/jssc.1998.8051

Mizusaki, 1985, Nonstoichiometry and defect structure of the perovskite-type oxides La1-Xsrxfeo3-delta, J Solid State Chem, 58, 257, 10.1016/0022-4596(85)90243-9

Mizusaki, 1983, Electronic conductivity, Seebeck coefficient, and defect structure of La1-Xsrxfeo3(X=0.1,0.25), J Am Ceram Soc, 66, 247, 10.1111/j.1151-2916.1983.tb15707.x

Mineshige, 2006, Oxygen nonstoichiometry, mixed valency and mixed conduction in (La,Sr)(Co,Fe)O3-delta, Solid State Ionics, 177, 1803, 10.1016/j.ssi.2006.08.016

Mizusaki, 1989, Electrical-conductivity and Seebeck coefficient of nonstoichiometric La1-Xsrxcoo3-delta, J Electrochem Soc, 136, 2082, 10.1149/1.2097187

Ullmann, 2000, Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes, Solid State Ionics, 138, 79, 10.1016/S0167-2738(00)00770-0

Goodenough, 1967, Phys Rev, 164, 785, 10.1103/PhysRev.164.785

Teraoka, 1991, Influence of constituent metal-cations in substituted Lacoo3 on mixed conductivity and oxygen permeability, Solid State Ionics, 48, 207, 10.1016/0167-2738(91)90034-9

Niu, 2018, A-site deficient (La0.6Sr0.4)(1-x)Co0.2Fe0.6Nb0.2O3-delta symmetrical electrode materials for solid oxide fuel cells, Electrochim Acta, 270, 174, 10.1016/j.electacta.2018.03.085

Akbari-Fakhrabadi, 2017, Structural and mechanical properties of La0.6Sr0.4M0.1Fe0.9O3-δ (M: Co, Ni and Cu) perovskites, Ceram Int, 43, 2089, 10.1016/j.ceramint.2016.10.185

Huang, 2012, Creep behavior and its correlation with defect chemistry of La0.58Sr0.4Co0.2Fe0.8O3-delta, Acta Mater, 60, 2479, 10.1016/j.actamat.2011.12.025

Kilner, 1996, Surface exchange of oxygen in mixed conducting perovskite oxides, Solid State Ionics, 86–8, 703, 10.1016/0167-2738(96)00153-1

Ishigaki, 1984, Diffusion of oxide ions in Lafeo3 single-crystal, J Solid State Chem, 55, 50, 10.1016/0022-4596(84)90246-9

Ishigaki, 1988, Diffusion of oxide ion vacancies in perovskite-type oxides, J Solid State Chem, 73, 179, 10.1016/0022-4596(88)90067-9

Ishigaki, 1984, Tracer diffusion-coefficient of oxide ions in Lacoo3 single-crystal, J Solid State Chem, 54, 100, 10.1016/0022-4596(84)90136-1

Berenov, 2010, Oxygen tracer diffusion and surface exchange kinetics in La0.6Sr0.4CoO3-delta, Solid State Ionics, 181, 819, 10.1016/j.ssi.2010.04.031

Adler, 1996, Electrode kinetics of porous mixed-conducting oxygen electrodes, J Electrochem Soc, 143, 3554, 10.1149/1.1837252

De Souza, 1998, Oxygen transport in La1-xSrxMn1-yCoyO3 +/-delta perovskites - Part I. Oxygen tracer diffusion, Solid State Ionics, 106, 175, 10.1016/S0167-2738(97)00499-2

Fan, 2011, The ionic conductivity, thermal expansion behavior, and chemical compatibility of La0.54Sr0.44Co0.2Fe0.8O3-delta as SOFC cathode material, Solid State Sci, 13, 1835, 10.1016/j.solidstatesciences.2011.07.007

Esquirol, 2004, Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-delta/Ce0.8Ge0.2O2-x composite cathode for IT-SOFCs, Solid State Ionics, 175, 63, 10.1016/j.ssi.2004.09.013

Manning, 1996, Oxygen self-diffusion and surface exchange studies of oxide electrolytes having the fluorite structure, Solid State Ionics, 93, 125, 10.1016/S0167-2738(96)00514-0

Druce, 2015, Oxygen exchange and transport in dual phase ceramic composite electrodes, Faraday Discuss, 182, 271, 10.1039/C5FD00028A

Wang, 2003, An electrical conductivity relaxation study of La0.6Sr0.4Fe0.8CO0.2O3-delta, Solid State Ionics, 156, 201, 10.1016/S0167-2738(02)00178-9

Zhao, 2013, Effect of boron deposition and poisoning on the surface exchange properties of LSCF electrode materials of solid oxide fuel cells, J Electrochem Soc, 160, F682, 10.1149/2.131306jes

Cox-Galhotra, 2010, Unreliability of simultaneously determining k(chem) and D-chem via conductivity relaxation for surface-modified La0.6Sr0.4Co0.2Fe0.8O3-delta, Solid State Ionics, 181, 1429, 10.1016/j.ssi.2010.08.006

Finsterbusch, 2010, Effect of Cr2O3 on the 18O tracer incorporation in SOFC materials, Solid State Ionics, 181, 640, 10.1016/j.ssi.2010.03.007

Armstrong, 2011, Determination of surface exchange coefficients of LSM, LSCF, YSZ, GDC constituent materials in composite SOFC cathodes, J Electrochem Soc, 158, B492, 10.1149/1.3555122

Li, 2010, Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes, J Power Sources, 195, 3345, 10.1016/j.jpowsour.2009.12.062

Adler, 2004, Factors governing oxygen reduction in solid oxide fuel cell cathodes, Chem Rev, 104, 4791, 10.1021/cr020724o

Wang, 2012, Oxygen exchange kinetics on solid oxide fuel cell cathode materials-general trends and their mechanistic interpretation, J Mater Res, 27, 2000, 10.1557/jmr.2012.186

Svensson, 1996, A mathematical model of the porous SOFC cathode, Solid State Ionics, 86–8, 1211, 10.1016/0167-2738(96)00289-5

Svensson, 1997, Mathematical modeling of oxygen exchange and transport in air-perovskite-YSZ interface regions .1. Reduction of intermediately adsorbed oxygen, J Electrochem Soc, 144, 2719, 10.1149/1.1837887

Liu, 1999, Fundamental issues in modeling of mixed ionic-electronic conductors (MIECs), Solid State Ionics, 118, 11, 10.1016/S0167-2738(98)00451-2

Baumann, 2005, Strong performance improvement of La0.6Sr0.4Co0.8Fe0.2O3-delta SOFC cathodes by electrochemical activation, J Electrochem Soc, 152, A2074, 10.1149/1.2034529

Jiang, 2001, Use of gaseous Cr species to diagnose surface and bulk process for O-2 reduction in solid oxide fuel cells, J Appl Electrochem, 31, 181, 10.1023/A:1004137720740

Endo, 1998, Low overvoltage mechanism of high ionic conducting cathode for solid oxide fuel cell, J Electrochem Soc, 145, L35, 10.1149/1.1838332

Almar, 2017, Oxygen transport kinetics of mixed ionic-electronic conductors by coupling focused ion beam tomography and electrochemical impedance spectroscopy, J Electrochem Soc, 164, F289, 10.1149/2.0851704jes

Wang, 2013, Oxygen reduction and transport on the La1-xSrxCo1-yFeyO3-delta cathode in solid oxide fuel cells: a first-principles study, J Mater Chem A, 1, 12932, 10.1039/c3ta11554b

Wang, 2016, Mechanisms of performance degradation of (La,Sr)(Co,Fe)O3-delta solid oxide fuel cell cathodes, J Electrochem Soc, 163, F581, 10.1149/2.0031607jes

Zhao, 2014, Insight into surface segregation and chromium deposition on La0.6Sr0.4Co0.2Fe0.8O3-delta cathodes of solid oxide fuel cells, J Mater Chem A, 2, 11114, 10.1039/C4TA01426J

Kubicek, 2011, Relationship between cation segregation and the electrochemical oxygen reduction kinetics of La0.6Sr0.4CoO3-delta thin film electrodes, J Electrochem Soc, 158, B727, 10.1149/1.3581114

Fan, 2009, A-deficit LSCF for intermediate temperature solid oxide fuel cells, Solid State Ionics, 180, 973, 10.1016/j.ssi.2009.03.017

Horita, 2001, Electrode reaction of La1-xSrxCoO3-d cathodes on La0.8Sr0.2Ga0.8Mg0.2O3-y electrolyte in solid oxide fuel cells, J Electrochem Soc, 148, A456, 10.1149/1.1362540

Gomez, 2016, Performance of La(0.6)Sr(0.4)Co(1-y)Fe(y)O3 (y=0.2, 0.5 and 0.8) nanostructured cathodes for intermediate-temperature solid-oxide fuel cells: influence of microstructure and composition, Ceram Int, 42, 3145, 10.1016/j.ceramint.2015.10.104

Saher, 2017, Influence of ionic conductivity of the nano-particulate coating phase on oxygen surface exchange of La0.58Sr0.4Co0.2Fe0.8O3-delta, J Mater Chem A, 5, 4991, 10.1039/C6TA10954C

Dusastre, 1999, Optimisation of composite cathodes for intermediate temperature SOFC applications, Solid State Ionics, 126, 163, 10.1016/S0167-2738(99)00108-3

Murray, 2002, Electrochemical performance of (La,Sr)(Co,Fe)O-3-(Ce,Gd)O-3 composite cathodes, Solid State Ionics, 148, 27, 10.1016/S0167-2738(02)00102-9

Leng, 2008, Development of LSCF-GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte, Int J Hydrog Energy, 33, 3808, 10.1016/j.ijhydene.2008.04.034

Chen, 2009, Palladium and ceria infiltrated La0.8Sr0.2Co0.5Fe0.5O3-delta cathodes of solid oxide fuel cells, J Power Sources, 194, 275, 10.1016/j.jpowsour.2009.04.041

dos Santos-Gomez, 2017, Stability and performance of La0.6Sr0.4Co0.2Fe0.8O3-delta nanostructured cathodes with Ce0.8Gd0.2O1.9 surface coating, J Power Sources, 347, 178, 10.1016/j.jpowsour.2017.02.045

dos Santos-Gomez, 2018, LSCF-CGO nanocomposite cathodes deposited in a single step by spray-pyrolysis, J Eur Ceram Soc, 38, 1647, 10.1016/j.jeurceramsoc.2017.10.010

Kim, 2017, Evaluation of La0.6Sr0.4Co0.2Fe0.8O3-Gd0.1Ce0.9O1.95 composite cathode with three dimensional microstructure reconstruction, J Power Sources, 342, 787, 10.1016/j.jpowsour.2016.12.113

Hu, 2015, Effects of ceria conductivity on the oxygen incorporation at the LSCF-SDC-gas three-phase boundary, J Electrochem Soc, 162, F33, 10.1149/2.0331501jes

Liu, 1998, Significance of interfaces in solid-state cells with porous electrodes of mixed ionic-electronic conductors, Solid State Ionics, 107, 105, 10.1016/S0167-2738(97)00528-6

Sammes, 1999, Bismuth based oxide electrolytes - structure and ionic conductivity, J Eur Ceram Soc, 19, 1801, 10.1016/S0955-2219(99)00009-6

Philippeau, 2013, Solid State Ionics, 249, 17, 10.1016/j.ssi.2013.06.009

Steele, 1998, Properties of La0.6Sr0.4Co0.2Fe0.8O3-x (LSCF) double layer cathodes on gadolinium-doped cerium oxide (CGO) electrolytes - II. Role of oxygen exchange and diffusion, Solid State Ionics, 106, 255, 10.1016/S0167-2738(97)00430-X

Yoshioka, 2010, Fabrication of anode supported SOFC using plasma-sprayed films of the apatite-type lanthanum silicate as an electrolyte, Solid State Ionics, 181, 1707, 10.1016/j.ssi.2010.09.030

Mieda, 2014, Influence of nano-sized LSCF cathode and its firing temperature on electrochemical performance in oxygen-excess-type solid electrolyte (OESE)-based fuel cells, J Power Sources, 272, 422, 10.1016/j.jpowsour.2014.08.079

Yoshioka, 2014, Fabrication of apatite-type lanthanum silicate films and anode supported solid oxide fuel cells using nano-sized printable paste, J Eur Ceram Soc, 34, 373, 10.1016/j.jeurceramsoc.2013.08.041

Gao, 2017, Tape casting of high-performance low-temperature solid oxide cells with thin La0.8Sr0.2Ga0.8Mg0.2O3-delta electrolytes and impregnated nano anodes, ACS Appl Mater Interfaces, 9, 7115, 10.1021/acsami.6b15224

Tsipis, 2007, Electrochemical behavior of mixed-conducting oxide cathodes in contact with apatite-type La10Si5AlO26.5 electrolyte, Electrochim Acta, 52, 4428, 10.1016/j.electacta.2006.12.025

Cao, 2013, Identification of oxygen reduction processes at (La,Sr)MnO3 electrode/La9.5Si6O26.25 apatite electrolyte interface of solid oxide fuel cells, Int J Hydrog Energy, 38, 2421, 10.1016/j.ijhydene.2012.12.043

Jena, 2018, Hydrothermal synthesis and characterization of an apatite-type lanthanum silicate ceramic for solid oxide fuel cell electrolyte applications, Energy Technol, 6, 1739, 10.1002/ente.201700867

Philippeau, 2015, Oxygen reduction reaction in Pr2NiO4+delta/Ce0.9Gd0.1O1.95 and La0.6Sr0.4Co0.2Fe0.8O3-delta/La0.8Sr0.2Ga0.8Mg0.2O2.80 half cells: an electrochemical study, J Solid State Electrochem, 19, 871, 10.1007/s10008-014-2686-6

Mai, 2006, Time-dependent performance of mixed-conducting SOFC cathodes, Solid State Ionics, 177, 1965, 10.1016/j.ssi.2006.06.021

Simner, 2006, Degradation mechanisms of La-Sr-Co-Fe-O3SOFC cathodes, Electrochem Solid State Lett, 9, A478, 10.1149/1.2266160

Ding, 2013, Suppression of Sr surface segregation in La1-xSrxCo1-yFeyO3-delta: a first principles study, Phys Chem Chem Phys, 15, 489, 10.1039/C2CP43148C

Khan, 2018, Effects of applied current density and thermal cycling on the degradation of a solid oxide fuel cell cathode, Int J Hydrog Energy, 43, 12346, 10.1016/j.ijhydene.2018.04.175

Li, 2011, Mutual diffusion occurring at the interface between La(0.6)Sr(0.4)Co(0.8)Fe(0.2)O(3) cathode and Gd-doped ceria electrolyte during IT-SOFC cell preparation, ACS Appl Mater Interfaces, 3, 2772, 10.1021/am2005543

Oh, 2012, Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 cathode degradation, J Mater Res, 27, 1992, 10.1557/jmr.2012.222

Shah, 2011, Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: the role of nano-particle coarsening, Solid State Ionics, 187, 64, 10.1016/j.ssi.2011.02.003

Lee, 2012, Long-term stability of SOFC composite cathode activated by electrocatalyst infiltration, J Electrochem Soc, 159, F301, 10.1149/2.067207jes

Wang, 2013, Evaluation of sulfur dioxide poisoning for LSCF cathodes, Fuel Cells, 13, 520, 10.1002/fuce.201200172

Jiang, 2006, Deposition of Cr species at (La,Sr)(Co,Fe)O-3 cathodes of solid oxide fuel cells, J Electrochem Soc, 153, A127, 10.1149/1.2136077

Zhou, 2010, Electrochemical performance and stability of the cathode for solid oxide fuel cells, J Electrochem Soc, 157, B1019, 10.1149/1.3397854

Endler-Schuck, 2015, The chemical oxygen surface exchange and bulk diffusion coefficient determined by impedance spectroscopy of porous La0.58Sr0.4Co0.2Fe0.8O3 (-) (delta) (LSCF) cathodes, Solid State Ionics, 269, 67, 10.1016/j.ssi.2014.11.018

Qiang, 2007, Characterization of electrical properties of GDC doped A-site deficient LSCF based composite cathode using impedance spectroscopy, J Power Sources, 168, 338, 10.1016/j.jpowsour.2007.03.040

Lei, 2006, Low temperature processing of interlayer-free L0.6Sr0.4Co0.2Fe0.8O3-delta cathodes for intermediate temperature solid oxide fuel cells, J Power Sources, 161, 1169, 10.1016/j.jpowsour.2006.06.016

Murata, 2005, Morphology control of La(Sr)Fe(Co)O3-a cathodes for IT-SOFCs, J Power Sources, 145, 257, 10.1016/j.jpowsour.2004.12.063

Chen, 2012, Interlayer-free electrodes for IT-SOFCs by applying Co3O4 as sintering aid, Int J Hydrog Energy, 37, 11946, 10.1016/j.ijhydene.2012.05.053

Jiang, 2015, Thermally and electrochemically induced electrode/electrolyte interfaces in solid oxide fuel cells: an AFM and EIS study, J Electrochem Soc, 162, F1119, 10.1149/2.0111510jes

Chen, 2016, Direct application of cobaltite-based perovskite cathodes on the yttria-stabilized zirconia electrolyte for intermediate temperature solid oxide fuel cells, J Mater Chem A, 4, 17678, 10.1039/C6TA07067A

Li, 2016, Smart utilization of cobaltite-based double perovskite cathodes on barrier-layer-free zirconia electrolyte of solid oxide fuel cells, J Mater Chem A, 4, 19019, 10.1039/C6TA08396J

Chen, 2016, Polarization-induced interface and Sr segregation of in situ assembled La0.6Sr0.4Co0.2Fe0.8O3-delta electrodes on Y2O3-ZrO2 electrolyte of solid oxide fuel cells, ACS Appl Mater Interfaces, 8, 31729, 10.1021/acsami.6b11665

He, 2018, A FIB-STEM study of strontium segregation and interface formation of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-δ cathode on Y2O3-ZrO2 electrolyte of solid oxide fuel cells, J Electrochem Soc, 165, F417, 10.1149/2.0151807jes

Wang, 2005, Microstructure of ZrO2–CeO2 hetero-multi-layer films grown on YSZ substrate, Acta Mater, 53, 1921, 10.1016/j.actamat.2005.01.003

Trampert, 1992, High resolution transmission electron microscopy studies of the Ag/MgO interface, Acta Metall Mater, 40, S227, 10.1016/0956-7151(92)90281-I

Lebedev, 2000, High-resolution electron microscopy study of strained epitaxial La0.7Sr0.3MnO3thin films, Philos Mag A, 80, 673, 10.1080/01418610008212075

He, 2017, A FIB-STEM study of La0.8Sr0.2MnO3 cathode and Y2O3-ZrO2/Gd2O3-CeO2 electrolyte interfaces of solid oxide fuel cells, J Electrochem Soc, 164, F1437, 10.1149/2.1061713jes

Yamamoto, 1987, Perovskite-type oxides as oxygen electrodes for high-temperature oxide fuel-cells, Solid State Ionics, 22, 241, 10.1016/0167-2738(87)90039-7

Yokokawa, 2003, Understanding materials compatibility, Annu Rev Mater Res, 33, 581, 10.1146/annurev.matsci.33.022802.093856

Rossignola, 2015, Interfaces and durability for different LSCF-CGO-YSZ systems for IT-SOFC, ECS Trans, 66, 109, 10.1149/06602.0109ecst

Kim, 2014, Stability of LSCF electrode with GDC interlayer in YSZ-based solid oxide electrolysis cell, Solid State Ionics, 262, 303, 10.1016/j.ssi.2014.01.001

Kiebach, 2015, Stability of La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 cathodes during sintering and solid oxide fuel cell operation, J Power Sources, 283, 151, 10.1016/j.jpowsour.2015.02.064

Puengjinda, 2017, Effect of microstructure on performance of double-layer hydrogen electrodes for reversible SOEC/SOFC, J Electrochem Soc, 164, F889, 10.1149/2.0241709jes

Uchida, 2017, Important roles of ceria-based materials on durability of hydrogen and oxygen electrodes for reversible SOEC/SOFC, ECS Trans, 78, 3189, 10.1149/07801.3189ecst

Shimura, 2017, High durability of La0.6Sr0.4Co0.2Fe0.8O3-delta/samaria-doped ceria (SDC) composite oxygen electrode with SDC interlayer for reversible solid oxide fuel cell/solid oxide electrolysis cell, J Ceram Soc Jpn, 125, 218, 10.2109/jcersj2.16274

Fonseca, 2010, Properties of bias-assisted sputtered gadolinia-doped ceria interlayers for solid oxide fuel cells, J Power Sources, 195, 1599, 10.1016/j.jpowsour.2009.09.050

Wang, 2005, High-performance lanthanum-ferrite-based cathode for SOFC, Solid State Ionics, 176, 457, 10.1016/j.ssi.2004.09.007

Knibbe, 2010, Cathode-electrolyte interfaces with CGO barrier layers in SOFC, J Am Ceram Soc, 93, 2877, 10.1111/j.1551-2916.2010.03763.x

Celikbilek, 2016, Rational design of hierarchically nanostructured electrodes for solid oxide fuel cells, J Power Sources, 333, 72, 10.1016/j.jpowsour.2016.09.156

Park, 2016, Impact of nanostructured anode on low-temperature performance of thin-film-based anode-supported solid oxide fuel cells, J Power Sources, 315, 324, 10.1016/j.jpowsour.2016.03.055

Bucher, 2011, Oxygen exchange kinetics of La0.58Sr0.4Co0.2Fe0.8O3 at 600°C in dry and humid atmospheres, Solid State Ionics, 191, 61, 10.1016/j.ssi.2011.03.019

Yu, 2016, Effect of Sr content and strain on Sr surface segregation of La1–xSrxCo0.2Fe0.8O3−δ as cathode material for solid oxide fuel cells, ACS Appl Mater Interfaces, 8, 26704, 10.1021/acsami.6b07118

Liu, 2014, Performance stability and degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3-delta cathodes under solid oxide fuel cells operation conditions, Int J Hydrog Energy, 39, 15868, 10.1016/j.ijhydene.2014.03.077

Pan, 2015, Effect of Sr surface segregation of La0.6Sr0.4Co0.2Fe0.8O3-delta electrode on its electrochemical performance in SOC, J Electrochem Soc, 162, F1316, 10.1149/2.0371512jes

Druce, 2014, Surface segregation and poisoning in materials for low-temperature SOFCs, MRS Bull, 39, 810, 10.1557/mrs.2014.170

Araki, 2014, Strontium surface segregation in La0.58Sr0.4Co0.2Fe0.8O3-delta annealed under compression, Solid State Ionics, 268, 1, 10.1016/j.ssi.2014.09.019

Niania, 2018, In situ study of strontium segregation in La0.6Sr0.4Co0.2Fe0.8O3-delta in ambient atmospheres using high-temperature environmental scanning electron microscopy, J Mater Chem A, 6, 14120, 10.1039/C8TA01341A

Wang, 2018, Degradation mechanisms of porous La0.6Sr0.4Co0.2Fe0.8O3-delta solid oxide fuel cell cathodes, J Electrochem Soc, 165, F564, 10.1149/2.1211807jes

Druce, 2014, Surface termination and subsurface restructuring of perovskite-based solid oxide electrode materials, Energy Environ Sci, 7, 3593, 10.1039/C4EE01497A

Druce, 2014, Surface composition of perovskite-type materials studied by low energy ion scattering (LEIS), Solid State Ionics, 262, 893, 10.1016/j.ssi.2013.09.010

Hardy, 2012, Lattice expansion of LSCF-6428 cathodes measured by in situ XRD during SOFC operation, J Power Sources, 198, 76, 10.1016/j.jpowsour.2011.09.099

de Jong, 2003, Electronic structure of La0.7Sr0.3MnO3 thin films for hybrid organic/inorganic spintronics applications, J Appl Phys, 94, 7292, 10.1063/1.1625081

Wu, 2005, X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3, Mater Lett, 59, 1480, 10.1016/j.matlet.2004.12.036

Cai, 2012, Chemical heterogeneities on La0.6Sr0.4CoO3-delta thin films-correlations to cathode surface activity and stability, Chem Mater, 24, 1116, 10.1021/cm203501u

Liu, 2012, Enhanced performance of LSCF cathode through surface modification, Int J Hydrog Energy, 37, 8613, 10.1016/j.ijhydene.2012.02.139

Tan, 2010, Synthesis and characterization of P(VDF-co-TrFE-co-CTFE) -g-SPS, Acta Polym Sin, 1269, 10.3724/SP.J.1105.2010.09408

Kuyyalil, 2015, Vacancy assisted SrO formation on La0.8Sr0.2Co0.2Fe0.8O3−δ surfaces—a synchrotron photoemission study, Surf Sci, 642, 33, 10.1016/j.susc.2015.08.001

Tsvetkov, 2016, Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface, Nat Mater, 15, 1010, 10.1038/nmat4659

Lee, 2013, Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites, J Am Chem Soc, 135, 7909, 10.1021/ja3125349

Wang, 2014, Effect of temperature on the chromium deposition and poisoning of La0.6Sr0.4Co0.2Fe0.8O3-delta cathodes of solid oxide fuel cells, Electrochim Acta, 139, 173, 10.1016/j.electacta.2014.07.028

Chen, 2010, Chromium deposition and poisoning in dry and humidified air at (La0.8Sr0.2)(0.9)MnO3+delta cathodes of solid oxide fuel cells, Int J Hydrog Energy, 35, 2477, 10.1016/j.ijhydene.2009.12.185

Sharma, 2015, Cationic surface segregation in doped LaMnO3, J Mater Sci, 50, 3051, 10.1007/s10853-015-8861-z

Wang, 2007, The effect of oxygen vacancy concentration on the elastic modulus of fluorite-structured oxides, Solid State Ionics, 178, 53, 10.1016/j.ssi.2006.11.003

Liu, 2011, Influence of water vapor on long-term performance and accelerated degradation of solid oxide fuel cell cathodes, J Power Sources, 196, 7090, 10.1016/j.jpowsour.2010.08.014

Bucher, 2012, Impact of humid atmospheres on oxygen exchange properties, surface-near elemental composition, and surface morphology of La(0.6)Sr(0.4)CoO3-delta, Solid State Ionics, 208, 43, 10.1016/j.ssi.2011.12.005

Vovk, 2004, In situ XPS studies of perovskite oxide surfaces under electrochemical polarization†, J Phys Chem B, 109, 2445, 10.1021/jp0486494

Mutoro, 2012, Reversible compositional control of oxide surfaces by electrochemical potentials, J Phys Chem Lett, 3, 40, 10.1021/jz201523y

Wang, 2014, Sr and Zr diffusion in LSCF/10GDC/8YSZ triplets for solid oxide fuel cells (SOFCs), J Power Sources, 258, 281, 10.1016/j.jpowsour.2014.02.046

Laurencin, 2017, Degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3-delta/Gd0.1Ce0.9O2-delta composite electrode operated under solid oxide electrolysis and fuel cell conditions, Electrochim Acta, 241, 459, 10.1016/j.electacta.2017.05.011

Ai, 2018, Suppressed Sr segregation and performance of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-delta oxygen electrode on Y2O3-ZrO2 electrolyte of solid oxide electrolysis cells, J Power Sources, 384, 125, 10.1016/j.jpowsour.2018.02.082

Huang, 1998, Sr- and Ni-doped LaCoO3 and LaFeO3 perovskites: new cathode materials for solid-oxide fuel cells, J Electrochem Soc, 145, 3220, 10.1149/1.1838789

Chen, 2015, Highly chromium contaminant tolerant BaO infiltrated La0.6Sr0.4Co0.2Fe0.8O3-delta cathodes for solid oxide fuel cells, Phys Chem Chem Phys, 17, 4870, 10.1039/C4CP04172K

Laguna-Bercero, 2011, Micro-spectroscopic study of the degradation of scandia and ceria stabilized zirconia electrolytes in solid oxide electrolysis cells, Int J Hydrog Energy, 36, 13051, 10.1016/j.ijhydene.2011.07.082

Virkar, 2010, Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells, Int J Hydrog Energy, 35, 9527, 10.1016/j.ijhydene.2010.06.058

Yin, 2018, Thermodynamic perspective of Sr-related degradation issues in SOFCs, Int J Appl Ceram Technol, 15, 380, 10.1111/ijac.12809

Tietz, 2008, From powder properties to fuel cell performance - a holistic approach for SOFC cathode development, Solid State Ionics, 179, 1509, 10.1016/j.ssi.2007.11.037

Yang, 2006, Formation of La2Zr2O7 or SrZrO3 on cathode-supported solid oxide fuel cells, J Power Sources, 159, 63, 10.1016/j.jpowsour.2006.04.049

Matsuda, 2003, High temperature phase transitions of SrZrO3, J Alloy Comp, 351, 43, 10.1016/S0925-8388(02)01068-X

Tu, 1999, Ln(0.4)Sr(0.6)Co(0.8)Fe(0.2)O(3-delta) (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells, Solid State Ionics, 117, 277, 10.1016/S0167-2738(98)00428-7

Poulsen, 1992, Phase-Relations and conductivity of Sr-zirconates and La-zirconates, Solid State Ionics, 53–6, 777, 10.1016/0167-2738(92)90254-M

Tsoga, 2000, Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology, Acta Mater, 48, 4709, 10.1016/S1359-6454(00)00261-5

Develos-Bagarinao, 2017, Elucidating the origin of oxide ion blocking effects at GDC/SrZr(Y)O-3/YSZ interfaces, J Mater Chem A, 5, 8733, 10.1039/C7TA01589E

Kindermann, 1996, Chemical compatibility of the LaFeO3 base perovskites (La0.6Sr0.4)(z)Fe(0.8)M(0.2)O(3-delta) (z=1, 0.9; M=Cr, Mn, Co, Ni) with yttria stabilized zirconia, Solid State Ionics, 89, 215, 10.1016/0167-2738(96)00366-9

Kenjo, 1992, Lamno3 air cathodes containing Zro2 electrolyte for high-temperature solid oxide fuel-cells, Solid State Ionics, 57, 295, 10.1016/0167-2738(92)90161-H

Jiang, 1999, The electrochemical performance of LSM/zirconia-yttria interface as a function of a-site non-stoichiometry and cathodic current treatment, Solid State Ionics, 121, 1, 10.1016/S0167-2738(98)00295-1

Yokokawa, 1993, Chemical thermodynamic stabilities of the interface, 752

Yokokawa, 1998, Materials development in solid oxide fuel cells, Denki Kagaku, 66, 134

Uchida, 1999, High performance electrode for medium-temperature solid oxide fuel cells - La(Sr)CoO3 cathode with ceria interlayer on zirconia electrolyte, Electrochem Solid State Lett, 2, 428, 10.1149/1.1390860

Mai, 2006, Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells - Part II. Influence of the CGO interlayer, Solid State Ionics, 177, 2103, 10.1016/j.ssi.2005.12.010

Giannici, 2017, Cation diffusion and segregation at the interface between samarium-doped ceria and LSCF or LSFCu cathodes investigated with X-ray microspectroscopy, ACS Appl Mater Interfaces, 9, 44466, 10.1021/acsami.7b13377

Yokokawa, 2008, Thermodynamic and kinetic considerations on degradations in solid oxide fuel cell cathodes, J Alloy Comp, 452, 41, 10.1016/j.jallcom.2006.12.150

Sanchez, 2017, A 2D and 3D X-ray mu-diffraction and mu-fluorescence study of a mixed ionic electronic conductor, Int J Hydrog Energy, 42, 1203, 10.1016/j.ijhydene.2016.11.094

Uhlenbruck, 2007, Thin film coating technologies of (Ce,Gd)O2-delta interlayers for application in ceramic high-temperature fuel cells, Thin Solid Films, 515, 4053, 10.1016/j.tsf.2006.10.127

Wang, 2014, Effect of polarization on Sr and Zr diffusion behavior in LSCF/GDC/YSZ system, Solid State Ionics, 262, 454, 10.1016/j.ssi.2014.04.002

Tsoga, 1998, Performance of a double-layer CGO/YSZ electrolyte for solid oxide fuel cells, Ionics, 4, 234, 10.1007/BF02375951

Wankmuller, 2017, Correlative tomography at the cathode/electrolyte interfaces of solid oxide fuel cells, J Power Sources, 360, 399, 10.1016/j.jpowsour.2017.06.008

Morales, 2017, Multi-scale analysis of the diffusion barrier layer of gadolinia-doped ceria in a solid oxide fuel cell operated in a stack for 3000 h, J Power Sources, 344, 141, 10.1016/j.jpowsour.2017.01.109

Izuki, 2011, Interfacial stability and cation diffusion across the LSCF/GDC interface, J Power Sources, 196, 7232, 10.1016/j.jpowsour.2010.11.013

Jian, 2006, Oxidation kinetics of Haynes 230 alloy in air at temperatures between 650 and 850 degrees C, J Power Sources, 159, 641, 10.1016/j.jpowsour.2005.09.065

Fergus, 2005, Metallic interconnects for solid oxide fuel cells, Mater Sci Eng A Struct Mater Prop Microst Process, 397, 271, 10.1016/j.msea.2005.02.047

Zhu, 2003, Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance, Mater Res Bull, 38, 957, 10.1016/S0025-5408(03)00076-X

Graham, 1971, Oxidation/vaporization kinetics of CR2O3, J Am Ceram Soc, 54, 89, 10.1111/j.1151-2916.1971.tb12225.x

Hilpert, 1996, Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes, J Electrochem Soc, 143, 3642, 10.1149/1.1837264

Paulson, 2004, Chromium poisoning of LSM-YSZ SOFC cathodes - I. Detailed study of the distribution of chromium species at a porous, single-phase cathode, J Electrochem Soc, 151, A1961, 10.1149/1.1806392

Tucker, 2006, A fundamental study of chromium deposition on solid oxide fuel cell cathode materials, J Power Sources, 160, 130, 10.1016/j.jpowsour.2006.02.017

Kim, 2011, Chromium deposition and poisoning at Ba0.5Sr0.5Co0.8Fe0.2O3-delta cathode of solid oxide fuel cells, Electrochem Solid State Lett, 14, B41, 10.1149/1.3549169

Kim, 2012, Effect of strontium content on chromium deposition and poisoning in Ba1-xSrxCo0.8Fe0.2O3-delta (0.3 <= x <= 0.7) cathodes of solid oxide fuel cells, J Electrochem Soc, 159, B185, 10.1149/2.092202jes

Lee, 2013, Effect of chromium on La0.6Sr0.4Co0.2Fe0.8O3-delta solid oxide fuel cell cathodes, J Electrochem Soc, 160, F629, 10.1149/2.099306jes

Jiang, 2002, A comparative investigation of chromium deposition at air electrodes of solid oxide fuel cells, J Eur Ceram Soc, 22, 361, 10.1016/S0955-2219(01)00280-1

Matsuzaki, 2001, Dependence of SOFC cathode degradation by chromium-containing alloy on compositions of electrodes and electrolytes, J Electrochem Soc, 148, A126, 10.1149/1.1339869

Simner, 2005, SOFC performance with Fe-Cr-Mn alloy interconnect, J Electrochem Soc, 152, A740, 10.1149/1.1864332

Konysheva, 2006, Chromium poisoning of perovskite cathodes by the ODS alloy Cr5Fe1Y(2)O(3) and the high chromium ferritic steel Crofer22APU, J Electrochem Soc, 153, A765, 10.1149/1.2172563

Bentzen, 2009, Chromium poisoning of LSM/YSZ and LSCF/CGO composite cathodes, Fuel Cells, 9, 823, 10.1002/fuce.200800143

Wei, 2015, Cr deposition on porous La0.6Sr0.4Co0.2Fe0.8O3-delta electrodes of solid oxide cells under open circuit condition, Solid State Ionics, 281, 29, 10.1016/j.ssi.2015.08.018

Jiang, 2000, Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells I. Mechanism and kinetics, J Electrochem Soc, 147, 4013, 10.1149/1.1394012

Jiang, 2005, Early interaction between Fe-Cr alloy metallic interconnect and Sr-doped LaMnO3 cathodes of solid oxide fuel cells, J Mater Res, 20, 747, 10.1557/JMR.2005.0101

Jiang, 2006, Interaction between Fe-Cr metallic interconnect and (La, Sr) MnO3/YSZ composite cathode of solid oxide fuel cells, J Electrochem Soc, 153, A1511, 10.1149/1.2207060

Jiang, 2014, Chromium deposition and poisoning of cathodes of solid oxide fuel cells - a review, Int J Hydrog Energy, 39, 505, 10.1016/j.ijhydene.2013.10.042

Ni, 2016, Degradation of (La0.6Sr0.4)(0.95)(Co0.2Fe0.8)O3-delta solid oxide fuel cell cathodes at the nanometer scale and below, ACS Appl Mater Interfaces, 8, 17360, 10.1021/acsami.6b05290

Schuler, 2012, Cr-poisoning in (La,Sr)(Co,Fe)O-3 cathodes after 10,000 h SOFC stack testing, J Power Sources, 211, 177, 10.1016/j.jpowsour.2012.03.045

Zhen, 2008, Characterization and performance of (La,Ba)(Co,Fe)O-3 cathode for solid oxide fuel cells with iron-chromium metallic interconnect, J Power Sources, 180, 695, 10.1016/j.jpowsour.2008.02.093

Chen, 2008, Chromium deposition and poisoning on (La(0.6)Sr(0.4-x)Ba(x)) (Co(0.2)Fe(0.8))O(3) (0 <= x <= 0.4) cathodes of solid oxide fuel cells, J Electrochem Soc, 155, B1093, 10.1149/1.2969914

Azad, 1994, Bismuth oxide-based solid electrolytes for fuel-cells, J Mater Sci, 29, 4135, 10.1007/BF00414192

Wachsman, 2009, Mechanistic understanding of Cr poisoning on La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), ECS Trans, 25, 2871, 10.1149/1.3205852

Fergus, 2005, Sealants for solid oxide fuel cells, J Power Sources, 147, 46, 10.1016/j.jpowsour.2005.05.002

Wang, 2007, Characteristics of a SiO2-B2O3-Al2O3-BaCO3-PbO2-ZnO glass-ceramic sealant for SOFCs, J Alloy Comp, 432, 189, 10.1016/j.jallcom.2006.05.105

Mahapatra, 2010, Seal glass for solid oxide fuel cells, J Power Sources, 195, 7129, 10.1016/j.jpowsour.2010.06.003

Zhang, 2008, Borate volatility from SOFC sealing glasses, J Am Ceram Soc, 91, 2564, 10.1111/j.1551-2916.2008.02479.x

Sasaki, 2011, Chemical durability of solid oxide fuel cells: influence of impurities on long-term performance, J Power Sources, 196, 9130, 10.1016/j.jpowsour.2010.09.122

Komatsu, 2009, A long-term degradation study of power generation characteristics of anode-supported solid oxide fuel cells using LaNi(Fe)O3 electrode, J Power Sources, 193, 585, 10.1016/j.jpowsour.2009.04.014

Chen, 2012, Impact of volatile boron species on the microstructure and performance of nano-structured (Gd,Ce)O2 infiltrated (La,Sr)MnO3 cathodes of solid oxide fuel cells, Electrochem Commun, 23, 129, 10.1016/j.elecom.2012.07.025

Chen, 2013, Effect of volatile boron species on the electrocatalytic activity of cathodes of solid oxide fuel cells I. (La,Sr)MnO3 based electrodes, J Electrochem Soc, 160, F183, 10.1149/2.007303jes

Chen, 2013, Effect of volatile boron species on the microstructure and composition of (La,Sr)MnO3 and (La,Sr)(Co,Fe)O-3 cathode materials of solid oxide fuel cells, J Electrochem Soc, 160, F1033, 10.1149/2.090309jes

Chen, 2013, Effect of volatile boron species on the electrocatalytic activity of cathodes of solid oxide fuel cells II. (La,Sr)(Co,Fe)O-3 based electrodes, J Electrochem Soc, 160, F301, 10.1149/2.019304jes

Chen, 2013, Chemical compatibility between boron oxides and electrolyte and cathode materials of solid oxide fuel cells, Fuel Cells, 13, 1101, 10.1002/fuce.201300100

Chenot, 1967, Phase boundaries in a portion of the system SrO—B2O3, J Am Ceram Soc, 50, 117, 10.1111/j.1151-2916.1967.tb15057.x

Levin, 1961, Immiscibility and the system lanthanum oxide–boric oxide, J Am Ceram Soc, 44, 87, 10.1111/j.1151-2916.1961.tb15356.x

Konovalov, 1950, Dokl Akad Nauk SSSR, 70, 847

Belyaev, 1956, Zh Fiz Khim, 30, 1419

Makram, 1972, Phase relations in the system Fe2O3·B2O3 and its application in single crystal growth of FeBO3, J Cryst Growth, 13–14, 585, 10.1016/0022-0248(72)90522-2

Hashimoto, 2010, Oxygen nonstoichiometry and thermo-chemical stability of La0.6Sr0.4Co1-yFeyO3-δ (y=0.2, 0.4, 0.6, 0.8), Solid State Ionics, 181, 1713, 10.1016/j.ssi.2010.09.024

Chen, 2014, New zinc and bismuth doped glass sealants with substantially suppressed boron deposition and poisoning for solid oxide fuel cells, J Mater Chem, 2, 18655, 10.1039/C4TA02951H

Zhang, 2017, Effects of Nb2O5 and Gd2O3 doping on boron volatility and activity between glass seals and lanthanum-containing cathode, J Eur Ceram Soc, 37, 1547, 10.1016/j.jeurceramsoc.2016.12.007

Jiang, 2004, A review of anode materials development in solid oxide fuel cells, J Mater Sci, 39, 4405, 10.1023/B:JMSC.0000034135.52164.6b

Yang, 2009, Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-delta, Science, 326, 126, 10.1126/science.1174811

Sasaki, 2006, H2S poisoning of solid oxide fuel cells, J Electrochem Soc, 153, A2023, 10.1149/1.2336075

Cheng, 2007, Influence of cell voltage and current on sulfur poisoning behavior of solid oxide fuel cells, J Power Sources, 172, 688, 10.1016/j.jpowsour.2007.07.052

Grgicak, 2007, Improved performance of Ni- and Co-YSZ anodes via sulfidation to NiS- and CoS-YSZ. Effects of temperature on electrokinetic parameters, J Phys Chem C, 111, 15446, 10.1021/jp073525n

Xiong, 2009, Sulfur poisoning of SOFC cathodes, J Electrochem Soc, 156, B588, 10.1149/1.3090169

Wang, 2011, Sulfur poisoning on La0.6Sr0.4Co0.2Fe0.8O3 cathode for SOFCs, J Electrochem Soc, 158, B1391, 10.1149/2.059111jes

Yang, 2017, A short review of cathode poisoning and corrosion in solid oxide fuel cell, Int J Hydrog Energy, 42, 24948, 10.1016/j.ijhydene.2017.08.057

Schuler, 2009, Sulfur as pollutant species on the cathode side of a SOFC system, ECS Trans, 25, 2845, 10.1149/1.3205848

Liu, 2011, Influence of SO2 on the long-term durability of SOFC cathodes, ECS Trans, 35, 2255, 10.1149/1.3570221

Yamaji, 2009, Effect of SO2 concentration on degradation of Sm0.5Sr0.5CoO3 cathode, ECS Trans, 25, 2853, 10.1149/1.3205849

Cheng, 2011, From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives, Energy Environ Sci, 4, 4380, 10.1039/c1ee01758f

Bucher, 2013, Sulphur poisoning of the SOFC cathode material La0.6Sr0.4CoO3-delta, Solid State Ionics, 238, 15, 10.1016/j.ssi.2013.03.007

Xie, 2013, Influence of sulfur impurities on the stability of La0.6Sr0.4Co0.2Fe0.8O3 cathode for solid oxide fuel cells, Solid State Ionics, 249, 177, 10.1016/j.ssi.2013.08.005

De Vero, 2018, Sulfur poisoning behavior of La1-xSrxCo1-yFeyO3-delta thin films with different compositions, J Alloy Comp, 748, 608, 10.1016/j.jallcom.2018.03.198

Wang, 2014, Sulfur deposition and poisoning of La0.6Sr0.4Co0.2Fe0.8O3-delta cathode materials of solid oxide fuel cells, J Electrochem Soc, 161, F1133, 10.1149/2.0041412jes

Wang, 2017, Effect of SO2 poisoning on the electrochemical activity of La0.6Sr0.4Co0.2Fe0.8O3 cathodes of solid oxide fuel cells, J Electrochem Soc, 164, F514, 10.1149/2.0421706jes

Madarasz, 1996, Oxidation of alkaline-earth-metal sulfide powders and thin films, J Mater Chem, 6, 781, 10.1039/JM9960600781

Darvish, 2018, Thermodynamic stability mapping and electrochemical study of La1-xSrxCo0.2Fe0.8O3 +/-delta (x=0.2-0.4) as a cathode of solid oxide fuel cells in the presence of SO2, Electrochim Acta, 287, 68, 10.1016/j.electacta.2018.04.039

Benson, 1999, Degradation of La0.6Sr0.4Fe0.8Co0.2O3-delta in carbon dioxide and water atmospheres, J Electrochem Soc, 146, 1305, 10.1149/1.1391762

Zhao, 2013, High- and low- temperature behaviors of La0.6Sr0.4Co0.2Fe0.8O3-delta cathode operating under CO2/H2O-containing atmosphere, Int J Hydrog Energy, 38, 15361, 10.1016/j.ijhydene.2013.09.089

Hardy, 2018, Evaluation of cation migration in lanthanum strontium cobalt ferrite solid oxide fuel cell cathodes via in-operando X-ray diffraction, J Mater Chem A, 6, 1787, 10.1039/C7TA06856E

Huang, 2016, Fundamental impact of humidity on SOFC cathode ORR, J Electrochem Soc, 163, F171, 10.1149/2.0221603jes

Shen, 2015, Moisture effect on La0.8Sr0.2MnO3 and La0.6Sr0.4Co0.2Fe0.8O3 cathode behaviors in solid oxide fuel cells, Fuel Cells, 15, 105, 10.1002/fuce.201400032

Horita, 2009, Effects of impurities on the degradation and long-term stability for solid oxide fuel cells, J Power Sources, 193, 194, 10.1016/j.jpowsour.2008.10.127

Schuler, 2011, Air side contamination in solid oxide fuel cell stack testing, J Power Sources, 196, 7225, 10.1016/j.jpowsour.2010.10.058

Schuler, 2012, Combined Cr and S poisoning in solid oxide fuel cell cathodes, J Power Sources, 201, 112, 10.1016/j.jpowsour.2011.10.123

Wang, 2015, Co-deposition and poisoning of chromium and sulfur contaminants on La0.6Sr0.4Co0.2Fe0.8O3-delta cathodes of solid oxide fuel cells, J Electrochem Soc, 162, F507, 10.1149/2.0231506jes

Ito, 2007, Oxygen separation from compressed air using a mixed conducting perovskite-type oxide membrane, Solid State Ionics, 178, 809, 10.1016/j.ssi.2007.02.031

Nagai, 2007, Relationship between cation substitution and stability of perovskite structure in SrCoO3–δ-based mixed conductors, Solid State Ionics, 177, 3433, 10.1016/j.ssi.2006.10.022

Chen, 2013, Highly active and stable (La0.24Sr0.16Ba0.6)(Co0.5Fe0.44Nb0.06)O3-delta (LSBCFN) cathodes for solid oxide fuel cells prepared by a novel mixing synthesis method, J Mater Chem A, 1, 4871, 10.1039/c3ta10230k

Aguadero, 2009, SrCo1-xSbxO3-δ perovskite oxides as cathode materials in solid oxide fuel cells, J Power Sources, 192, 132, 10.1016/j.jpowsour.2008.12.138

Aguadero, 2012, A new family of Mo-doped SrCoO3−δ perovskites for application in reversible solid state electrochemical cells, Chem Mater, 24, 2655, 10.1021/cm300255r

Li, 2017, A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C, Nat Commun, 8

Meffert, 2017, The impact of grain size, A/B-cation ratio, and Y-doping on secondary phase formation in (Ba0.5Sr0.5)(Co0.8Fe0.2) O3−δ, J Mater Sci, 52, 2705, 10.1007/s10853-016-0562-8

He, 2017, BaCo0.7Fe0.22Y0.08O3−δ as an active oxygen reduction electrocatalyst for low-temperature solid oxide fuel cells below 600°C, ACS Energy Lett, 2, 301, 10.1021/acsenergylett.6b00617

Duan, 2017, Zr and Y co-doped perovskite as a stable, high performance cathode for solid oxide fuel cells operating below 500°C, Energy Environ Sci, 10, 176, 10.1039/C6EE01915C

Fang, 2011, Performance and stability of niobium-substituted Ba0.5Sr0.5Co0.8Fe0.2O3-delta membranes, Solid State Ionics, 195, 1, 10.1016/j.ssi.2011.05.022

Chen, 2018, Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-delta as a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2 electrolyte of solid oxide fuel cells, J Power Sources, 378, 433, 10.1016/j.jpowsour.2017.12.066

Zhou, 2018, Pd-doped La0.6Sr0.4CoO2Fe0.8O3-delta perovskite oxides as cathodes for intermediate temperature solid oxide fuel cells, Solid State Ionics, 319, 22, 10.1016/j.ssi.2018.01.044

Lynch, 2011, Enhancement of La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3-delta) durability and surface electrocatalytic activity by La(0.85)Sr(0.15)MnO(3 +/-delta) investigated using a new test electrode platform, Energy Environ Sci, 4, 2249, 10.1039/c1ee01188j

Choi, 2010, Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations, J Power Sources, 195, 1441, 10.1016/j.jpowsour.2009.09.017

Armstrong, 2013, Effect of A and B-site cations on surface exchange coefficient for ABO(3) perovskite materials, Phys Chem Chem Phys, 15, 2298, 10.1039/c2cp42919e

Giuliano, 2017, Infiltration, overpotential and ageing effects on cathodes for solid oxide fuel cells: La0.6Sr0.4Co0.2Fe0.8O3-delta versus Ba0.5Sr0.5Co0.8Fe0.2O3-delta, J Electrochem Soc, 164, F3114, 10.1149/2.0161710jes

Ding, 2014, Enhancing SOFC cathode performance by surface modification through infiltration, Energy Environ Sci, 7, 552, 10.1039/c3ee42926a

Ai, 2017, A La0.8Sr0.2MnO3/La0.6Sr0.4Co0.2Fe0.8O3-delta core-shell structured cathode by a rapid sintering process for solid oxide fuel cells, Int J Hydrog Energy, 42, 7246, 10.1016/j.ijhydene.2016.10.036

Ding, 2013, Efficient electro-catalysts for enhancing surface activity and stability of SOFC cathodes, Adv Energy Mater, 3, 1149, 10.1002/aenm.201200984

Zhao, 2013, Enhanced chromium tolerance of La0.6Sr0.4Co0.2Fe0.8O3 (-) (delta) electrode of solid oxide fuel cells by Gd0.1Ce0.9O1.95 impregnation, Electrochem Commun, 37, 84, 10.1016/j.elecom.2013.10.019

Wang, 2018, Highly sulfur poisoning-tolerant BaCeO3-impregnated La0.6Sr0.4Co0.2Fe0.8O3-delta cathodes for solid oxide fuel cells, J Phys D Appl Phys, 51, 10.1088/1361-6463/aadf4c

Jiang, 2012, Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges, Int J Hydrog Energy, 37, 449, 10.1016/j.ijhydene.2011.09.067

Jiang, 2010, Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique, Electrochim Acta, 55, 3595, 10.1016/j.electacta.2010.02.019

Shah, 2008, Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3-(delta) into Gd-Doped Ceria, Solid State Ionics, 179, 2059, 10.1016/j.ssi.2008.07.002

Chrzan, 2017, La0.6Sr0.4Co0.2Fe0.8O3-delta oxygen electrodes for solid oxide cells prepared by polymer precursor and nitrates solution infiltration into gadolinium doped ceria backbone, J Eur Ceram Soc, 37, 3559, 10.1016/j.jeurceramsoc.2017.04.032

Chen, 2008, Nano-structured (La, Sr)(Co, Fe)O-3+YSZ composite cathodes for intermediate temperature solid oxide fuel cells, J Power Sources, 183, 586, 10.1016/j.jpowsour.2008.05.082

Wu, 2017, High performance yttria-stabilized zirconia based intermediate temperature solid oxide fuel cells with double nano layer composite cathode, Int J Hydrog Energy, 42, 1093, 10.1016/j.ijhydene.2016.09.057

Burye, 2016, Precursor solution additives improve desiccated La0.6Sr0.4Co0.8Fe0.2O3–x infiltrated solid oxide fuel cell cathode performance, J Power Sources, 301, 287, 10.1016/j.jpowsour.2015.10.012

Lou, 2010, Controlling the morphology and uniformity of a catalyst-infiltrated cathode for solid oxide fuel cells by tuning wetting property, J Power Sources, 195, 419, 10.1016/j.jpowsour.2009.07.048

Hong, 2017, A highly scalable spray coating technique for electrode infiltration: barium carbonate infiltrated La0.6Sr0.4Co0.2Fe0.8O3-delta perovskite structured electrocatalyst with demonstrated long term durability, Int J Hydrog Energy, 42, 24978, 10.1016/j.ijhydene.2017.08.091

Tomov, 2017, Performance optimization of LSCF/Gd:CeO2 composite cathodes via single-step inkjet printing infiltration, J Appl Electrochem, 47, 641, 10.1007/s10800-017-1066-1

Lou, 2009, Improving La0.6Sr0.4Co0.2Fe0.8O3-delta cathode performance by infiltration of a Sm0.5Sr0.5CoO3-delta coating, Solid State Ionics, 180, 1285, 10.1016/j.ssi.2009.06.014

Zhang, 2014, High performance La2NiO4+delta-infiltrated (La0.6Sr0.4)(0.995)Co0.2Fe0.8O3-delta cathode for solid oxide fuel cells, J Power Sources, 269, 412, 10.1016/j.jpowsour.2014.06.132

Komatsu, 2006, Cr poisoning suppression in solid oxide fuel cells using LaNi(Fe)O-3 electrodes, Electrochem Solid State Lett, 9, A9, 10.1149/1.2130309

Zhen, 2008, Development of Cr-tolerant cathodes of solid oxide fuel cells, Electrochem Solid State Lett, 11, B42, 10.1149/1.2828212

Huang, 2018, Nanoscale cathode modification for high performance and stable low-temperature solid oxide fuel cells (SOFCs), Nano Energy, 49, 186, 10.1016/j.nanoen.2018.04.028

Lee, 2011, Effect of Sr-doped LaCoO(3) and LaZrO(3) infiltration on the performance of SDC-LSCF cathode, J Electrochem Soc, 158, B735, 10.1149/1.3581026

Lee, 2014, High performance air electrode for solid oxide regenerative fuel cells fabricated by infiltration of nano-catalysts, J Power Sources, 250, 15, 10.1016/j.jpowsour.2013.10.123

Nie, 2010, La0.6Sr0.4Co0.2Fe0.8O3-delta cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells, J Power Sources, 195, 4704, 10.1016/j.jpowsour.2010.02.049

Shen, 2015, La0.6Sr0.4Co0.2Fe0.8O3 cathodes incorporated with Sm0.2Ce0.8O2 by three different methods for solid oxide fuel cells, J Power Sources, 296, 318, 10.1016/j.jpowsour.2015.07.060

Hong, 2016, Barium carbonate nanoparticles as synergistic catalysts for the oxygen reduction reaction on La0.6Sr0.4Co0.2Fe0.8O3-delta solid-oxide fuel cell cathodes, ChemElectroChem, 3, 805, 10.1002/celc.201500529

Hong, 2015, Barium carbonate nanoparticle as high temperature oxygen reduction catalyst for solid oxide fuel cell, Electrochem Commun, 51, 93, 10.1016/j.elecom.2014.12.017

Nadeem, 2018, Effect of NiO addition on oxygen reduction reaction at lanthanum strontium cobalt ferrite cathode for solid oxide fuel cell, Int J Hydrog Energy, 43, 8079, 10.1016/j.ijhydene.2018.03.053

Yang, 2018, Magnesium oxide as synergistic catalyst for oxygen reduction reaction on strontium doped lanthanum cobalt ferrite, Int J Hydrog Energy, 43, 3797, 10.1016/j.ijhydene.2017.12.183

Gao, 2017, Improve the catalytic property of La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathodes with CuO nanoparticles infiltration, Electrochim Acta, 246, 148, 10.1016/j.electacta.2017.05.138

Zhang, 2017, CaO effect on the electrochemical performance of lanthanum strontium cobalt ferrite cathode for intermediate-temperature solid oxide fuel cell, Int J Hydrog Energy, 42, 17242, 10.1016/j.ijhydene.2017.05.207

Li, 2017, Mechanism for the enhanced oxygen reduction reaction of La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3-delta)by strontium carbonate, Phys Chem Chem Phys, 19, 503, 10.1039/C6CP06204K

Ai, 2013, A fundamental study of infiltrated CeO2 and (Gd,Ce)O-2 nanoparticles on the electrocatalytic activity of Pt cathodes of solid oxide fuel cells, Solid State Ionics, 233, 87, 10.1016/j.ssi.2012.12.008

Ai, 2017, Role of electrocatalytic properties of infiltrated nanoparticles in the activity of cathodes of solid oxide fuel cells A case study of infiltrated La0.8Sr0.2CoxMn1-xO3 (x=0, 0.5, and 1) on Pt electrode, Int J Hydrog Energy, 42, 28807, 10.1016/j.ijhydene.2017.09.012

Zhang, 2017, Enhanced electrochemical property of La0.6Sr0.4Co0.8Fe0.2O3 as cathode for solid oxide fuel cell by efficient in situ polarization-exsolution treatment, Electrochim Acta, 258, 1096, 10.1016/j.electacta.2017.11.163

Zhang, 2005, Composite cathode La0.6Sr0.4Co0.2Fe0.8O3-Sm0.1Ce0.9O1.95-Ag for intermediate-temperature solid oxide fuel cells, J Alloy Comp, 395, 322, 10.1016/j.jallcom.2004.11.056

Liu, 2009, Preparation and application of nano-dispersed Ag in La0.6Sr0.4CoxFe1-xO3-delta perovskites for intermediate-temperature solid oxide fuel cell, Curr Appl Phys, 9, S51, 10.1016/j.cap.2008.08.021

Sahibzada, 1998, Pd-promoted La0.6Sr0.4Co0.2Fe0.8O3 cathodes, Solid State Ionics, 115, 285, 10.1016/S0167-2738(98)00294-X

Uchida, 2000, High performance electrodes for medium-temperature solid oxide fuel cells: activation of La(Sr)CoO3 cathode with highly dispersed Pt metal electrocatalysts, Solid State Ionics, 135, 347, 10.1016/S0167-2738(00)00465-3

Liu, 2010, Development of ceria based SOFCs with a high performance La0.6Sr0.4Co0.2Fe0.8O3-delta-Ce0.9Gd0.1O1.95-Ag composite cathode, J Fuel Cell Sci Technol, 7, 61003, 10.1115/1.3176220

Serra, 2007, On the nanostructuring and catalytic promotion of intermediate temperature solid oxide fuel cell (IT-SOFC) cathodes, J Power Sources, 172, 768, 10.1016/j.jpowsour.2007.05.018

Guo, 2015, B-site metal (Pd, Pt, Ag, Cu, Zn, Ni) promoted La1-xSrxCo1-yFeyO3-delta perovskite oxides as cathodes for IT-SOFCs, Catalysts, 5, 366, 10.3390/catal5010366

Chen, 2018, An effective strategy to enhancing tolerance to contaminants poisoning of solid oxide fuel cell cathodes, Nano Energy, 47, 474, 10.1016/j.nanoen.2018.03.043

Chen, 2010, Performance of large-scale anode-supported solid oxide fuel cells with impregnated La0.6Sr0.4Co0.2Fe0.8O3-delta+Y2O3 stabilized ZrO2 composite cathodes, J Power Sources, 195, 5201, 10.1016/j.jpowsour.2010.02.061

Liu, 2012, Performance degradation of impregnated La0.6Sr0.4Co0.2Fe0.8O3+Y2O3 stabilized ZrO2 composite cathodes of intermediate temperature solid oxide fuel cells, Int J Hydrog Energy, 37, 4388, 10.1016/j.ijhydene.2011.11.151

Liu, 2013, A stability study of impregnated LSCF-GDC composite cathodes of solid oxide fuel cells, J Alloy Comp, 578, 37, 10.1016/j.jallcom.2013.05.021

Burye, 2015, Improving La0.6Sr0.4Co0.8Fe0.2O3-delta infiltrated solid oxide fuel cell cathode performance through precursor solution desiccation, J Power Sources, 276, 54, 10.1016/j.jpowsour.2014.11.082

Tomov, 2018, The synergistic effect of cobalt oxide and Gd-CeO2 dual infiltration in LSCF/CGO cathodes, J Mater Chem, 6, 5071, 10.1039/C7TA10990C

Han, 2017, Fabrication of lanthanum strontium cobalt ferrite-gadolinium-doped ceria composite cathodes using a low-price inkjet printer, ACS Appl Mater Interfaces, 9, 39347, 10.1021/acsami.7b11462

Zhi, 2012, An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode, Energy Environ Sci, 5, 7066, 10.1039/c2ee02619h

Shao, 2004, A high-performance cathode for the next generation of solid-oxide fuel cells, Nature, 431, 170, 10.1038/nature02863

Li, 2014, Bismuth doped lanthanum ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells, ACS Appl Mater Interfaces, 6, 11286, 10.1021/am5017045

Khaerudini, 2015, Performance assessment of Bi0.3Sr0.7Co0.3Fe0.7O3-delta-LSCF composite as cathode for intermediate-temperature solid oxide fuel cells with La0.8Sr0.2Ga0.8Mg0.2O3-delta electrolyte, J Power Sources, 298, 269, 10.1016/j.jpowsour.2015.08.075

Fan, 2010, A high performance solid oxide fuel cells operating at intermediate temperature with a modified interface between cathode and electrolyte, J Eur Ceram Soc, 30, 1803, 10.1016/j.jeurceramsoc.2010.01.035

Li, 2015, Highly active YSB infiltrated LSCF cathode for proton conducting solid oxide fuel cells, Int J Hydrog Energy, 40, 13576, 10.1016/j.ijhydene.2015.07.164

Zhou, 2018, Effects of cerium doping on the performance of LSCF cathodes for intermediate temperature solid oxide fuel cells, Int J Hydrog Energy, 43, 18946, 10.1016/j.ijhydene.2018.08.041

He, 2018, Decorated Er0.4Bi1.6O3 enhanced interface stability and performance of cobaltite perovskite cathodes for Y2O3-ZrO2 electrolyte of solid oxide fuel cells, ACS Appl Mater Interfaces, 10, 40549, 10.1021/acsami.8b14026

Lee, 2014, Rational design of lower-temperature solid oxide fuel cell cathodes via nanotailoring of co-assembled composite structures, Angew Chem Int Ed Engl, 53, 13463, 10.1002/anie.201408210

Chen, 2018, Active, durable bismuth oxide-manganite composite oxygen electrodes: interface formation induced by cathodic polarization, J Power Sources, 397, 16, 10.1016/j.jpowsour.2018.07.012

Ai, 2017, Highly active and stable Er0.4Bi1.6O3 decorated La0.76Sr0.19MnO3+δ nanostructured oxygen electrodes for reversible solid oxide cells, J Mater Chem A, 5, 12149, 10.1039/C7TA02950K

De Vero, 2018, Enhanced stability of solid oxide fuel cells by employing a modified cathode-interlayer interface with a dense La0.6Sr0.4Co0.2Fe0.8O3-delta thin film, J Power Sources, 377, 128, 10.1016/j.jpowsour.2017.12.010

Jang, 2018, Enhancement of oxygen reduction reaction through coating a nano-web structured La0.6Sr0.4Co0.2Fe0.8O3.delta thin-film as a cathode/electrolyte interfacial layer for lowering the operating temperature of solid oxide fuel cells, J Power Sources, 392, 123, 10.1016/j.jpowsour.2018.04.106

Giuliano, 2017, Characterisation of La0.6Sr0.4CO0.2Fe0.8O3-delta - Ba0.5Sr0.5CO0.8Fe0.2O3-delta composite as cathode for solid oxide fuel cells, Electrochim Acta, 240, 258, 10.1016/j.electacta.2017.04.079

Fabbri, 2011, High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes, Energy Environ Sci, 4, 4984, 10.1039/c1ee02361f

Tucker, 2010, Progress in metal-supported solid oxide fuel cells: a review, J Power Sources, 195, 4570, 10.1016/j.jpowsour.2010.02.035

Atkinson, 2003, Metal-supported solid oxide fuel cells for operation at temperatures of 500–650 degrees C, 499

Marcano, 2017, Manufacturing of high performance solid oxide fuel cells (SOFCs) with atmospheric plasma spraying (APS) and plasma spray-physical vapor deposition (PS-PVD), Surf Coating Technol, 318, 170, 10.1016/j.surfcoat.2016.10.088

Henne, 2007, Solid oxide fuel cells: a challenge for plasma deposition processes, J Therm Spray Technol, 16, 381, 10.1007/s11666-007-9053-4

Hui, 2009, High performance metal-supported solid oxide fuel cells fabricated by thermal spray, J Power Sources, 191, 371, 10.1016/j.jpowsour.2009.02.067

Udomsilp, 2017, Novel processing of La0.58Sr0.4Co0.2Fe0.8O3-delta cathodes for metal-supported fuel cells, Mater Lett, 192, 173, 10.1016/j.matlet.2016.12.027

Zhu, 2017, Validation and electrochemical characterization of LSCF cathode deposition on metal supported SOFC, J Electrochem Soc, 164, F1489, 10.1149/2.1791713jes

Fan, 2016, Suspension plasma spraying of La0.6Sr0.4Co0.2Fe0.8O3-delta cathodes: influence of carbon black pore former on performance and degradation, J Power Sources, 316, 72, 10.1016/j.jpowsour.2016.02.075

Zhang, 2016, Thermally sprayed high-performance porous metal-supported solid oxide fuel cells with nanostructured La0.6Sr0.4Co0.2Fe0.8O3-delta cathodes, J Mater Chem A, 4, 7461, 10.1039/C6TA02065H

Harris, 2013, Fabrication and characterization of solid oxide fuel cell cathodes made from nano-structured LSCF-SDC composite feedstock, J Power Sources, 239, 234, 10.1016/j.jpowsour.2013.03.040

Kim, 2011, Electrochemical performance of unsintered Ba0.5Sr0.5Co0.8Fe0.2O3-delta, La0.6Sr0.Co-4(0).8Fe0.2O3-delta, and La0.8Sr0.2MnO3-delta cathodes for metal-supported solid oxide fuel cells, Int J Hydrog Energy, 36, 3138, 10.1016/j.ijhydene.2010.10.065

Choi, 2014, Low temperature preparation and characterization of solid oxide fuel cells on FeCr-based alloy support by aerosol deposition, Int J Hydrog Energy, 39, 12878, 10.1016/j.ijhydene.2014.06.070

Vassen, 2007, Manufacturing of high performance solid oxide fuel cells (SOFCs) with atmospheric plasma spraying (APS), Surf Coating Technol, 202, 499, 10.1016/j.surfcoat.2007.06.064

Harris, 2016, Degradation of La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.8Sm0.2O1.9 cathodes on coated and uncoated porous metal supports, Fuel Cells, 16, 319, 10.1002/fuce.201500139

Klemenso, 2011, High performance metal-supported solid oxide fuel cells with Gd-doped ceria barrier layers, J Power Sources, 196, 9459, 10.1016/j.jpowsour.2011.07.014

Kim, 2010, Effect of unsintered gadolinium-doped ceria buffer layer on performance of metal-supported solid oxide fuel cells using unsintered barium strontium cobalt ferrite cathode, J Power Sources, 195, 6420, 10.1016/j.jpowsour.2010.03.095

Stoots, 2010, High-temperature electrolysis for large-scale hydrogen production from nuclear energy - experimental investigations, Int J Hydrog Energy, 35, 4861, 10.1016/j.ijhydene.2009.10.045

Chen, 2015, Why solid oxide cells can be reversibly operated in solid oxide electrolysis cell and fuel cell modes?, Phys Chem Chem Phys, 17, 31308, 10.1039/C5CP05065K

Jiang, 2016, Challenges in the development of reversible solid oxide cell technologies: a mini review, Asia Pac J Chem Eng, 11, 386, 10.1002/apj.1987

Mocoteguy, 2013, A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells, Int J Hydrog Energy, 38, 15887, 10.1016/j.ijhydene.2013.09.045

Laguna-Bercero, 2010, Performance and characterization of (La, Sr)MnO3/YSZ and La0.6Sr0.4Co0.2Fe0.8O3 electrodes for solid oxide electrolysis cells, Chem Mater, 22, 1134, 10.1021/cm902425k

Marina, 2007, Electrode performance in reversible solid oxide fuel cells, J Electrochem Soc, 154, B452, 10.1149/1.2710209

Choi, 2013, Performance of La0.1Sr0.9Co0.8Fe0.2O3−δ and La0.1Sr0.9Co0.8Fe0.2O3−δ–Ce0.9Gd0.1O2 oxygen electrodes with Ce0.9Gd0.1O2 barrier layer in reversible solid oxide fuel cells, J Power Sources, 239, 361, 10.1016/j.jpowsour.2013.03.154

Elangovan, 2011, Materials for solid oxide electrolysis cells, ECS Trans, 35, 2875, 10.1149/1.3570287

Schefold, 2012, Nine thousand hours of operation of a solid oxide cell in steam electrolysis mode, J Electrochem Soc, 159, A137, 10.1149/2.076202jes

Fang, 2015, Performance and degradation of solid oxide electrolysis cells in stack, J Electrochem Soc, 162, F907, 10.1149/2.0941508jes

Choi, 2017, Development of solid oxide cells by co-sintering of GDC diffusion barriers with LSCF air electrode, Ceram Int, 43, 13653, 10.1016/j.ceramint.2017.07.075

Lopez-Robledo, 2018, Reversible operation of microtubular solid oxide cells using La0.6Sr0.4Co0.2Fe0.8O3-delta-Ce0.9Gd0.1O2-delta oxygen electrodes, J Power Sources, 378, 184, 10.1016/j.jpowsour.2017.12.035

The, 2015, Microstructural comparison of solid oxide electrolyser cells operated for 6100 h and 9000 h, J Power Sources, 275, 901, 10.1016/j.jpowsour.2014.10.188

Wei, 2015, Chromium deposition and poisoning at La0.6Sr0.4Co0.2Fe0.8O3-delta oxygen electrodes of solid oxide electrolysis cells, Phys Chem Chem Phys, 17, 1601, 10.1039/C4CP05110F

He, 2018, Cyclic polarization enhances the operating stability of La0.57Sr0.38Co0.18Fe0.72Nb0.1O3-δ oxygen electrode of reversible solid oxide cells, J Power Sources, 404, 73, 10.1016/j.jpowsour.2018.10.009

Schefold, 2017, 23,000 h steam electrolysis with an electrolyte supported solid oxide cell, Int J Hydrog Energy, 42, 13415, 10.1016/j.ijhydene.2017.01.072

Tietz, 2013, Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation, J Power Sources, 223, 129, 10.1016/j.jpowsour.2012.09.061

Fan, 2014, Electrochemical stability of La0.6Sr0.4Co0.2Fe0.8O3-delta-infiltrated YSZ oxygen electrode for reversible solid oxide fuel cells, Int J Hydrog Energy, 39, 14071, 10.1016/j.ijhydene.2014.05.149

Guan, 2018, Effect of Gd0.2Ce0.8O1.9 nanoparticles on the oxygen evolution reaction of La0.6Sr0.400.2Fe0.8O3-delta anode in solid oxide electrolysis cell, Chin J Catal, 39, 1484, 10.1016/S1872-2067(18)63118-3

Hernandez, 2018, Infiltrated mesoporous oxygen electrodes for high temperature co-electrolysis of H2O and CO2 in solid oxide electrolysis cells, J Mater Chem, 6, 9699, 10.1039/C8TA01045E

Tao, 2009, Polarization properties of La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3)-based double layer-type oxygen electrodes for reversible SOFCs, Electrochim Acta, 54, 3309, 10.1016/j.electacta.2008.12.048

Mogensen, 2004, Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides, Solid State Ionics, 174, 279, 10.1016/j.ssi.2004.07.036

Liu, 2011, Rational SOFC material design: new advances and tools, Mater Today, 14, 534, 10.1016/S1369-7021(11)70279-6

Jacobs, 2018, Material Discovery and design principles for stable, high activity perovskite cathodes for solid oxide fuel cells, Adv Energy Mater, 8, 10.1002/aenm.201702708