Development of laminated bamboo lumber with high bond strength for structural uses by O2 plasma
Tài liệu tham khảo
Scurlock, 2000, Bamboo: an over-looked biomass resource?, Biomass Bioenergy, 19, 229, 10.1016/S0961-9534(00)00038-6
Amada, 2001, Fracture properties of bamboo, Compos. B, 32, 451, 10.1016/S1359-8368(01)00022-1
Z. Liu, Z. Jiang, Z. Cai, B. Fei, Yu Yan, X. Liu. Effects of carbonization conditions on properties of bamboo pellets. Renew. Energy, 51(MAR.), 1-6.
Hassan, 2017, PsychophysioIogicaI effects of bamboo pIants on aduIts, Biomed Environ. Sci., 30, 846
Atanda, 2015, Environmental impacts of bamboo as a substitute constructional material in Nigeria, Case Stud. Constr. Mater., 3, 33
Yusof, 2016, Optimization of natural fiber composite parameter using Taguchi approach, Adv. Mater. Res., 1133, 185, 10.4028/www.scientific.net/AMR.1133.185
Shiji, 2007, Ac breakdown properties of bamboo pulp-ice composite system at cryogenic temperature, IEEE Trans. Dielectr. Electr. Insul., 14, 296, 10.1109/TDEI.2007.344606
Low, 2006, Mechanical and fracture properties of bamboo, Key Eng. Mater., 312, 15, 10.4028/www.scientific.net/KEM.312.15
Nurdiah, 2016, The potential of bamboo as building material in organic shaped buildings, Procedia – Soc. Behav. Sci., 30, 10.1016/j.sbspro.2015.12.004
Ren, 2014, Mechanical and thermal properties of bamboo filler-high density polyethylene composites, Beijing Linye Daxue Xuebao/J. Beijing Forestry Univ., 36, 133
Wang, 2008, Impact response of bamboo-plastic composites with the properties of bamboo and polyvinylchloride (pvc), J. Bionic Eng., 5, 28, 10.1016/S1672-6529(08)60068-2
Xin-gong, 2013, Study on natural aging properties of bamboo fibers/polylactic acid composites, J. Funct. Mater., 44, 1526
Zhou, 2012, A renewable bamboo carbon/polyaniline composite for a high-performance supercapacitor electrode material, J. Solid State Electrochem., 16, 877, 10.1007/s10008-011-1435-3
Wei, 2017, Flexural performance of bamboo scrimber beams strengthened with fiber-reinforced polymer, Constr. Build. Mater., 142, 66, 10.1016/j.conbuildmat.2017.03.054
Ibrahim, 2015, Physical and mechanical properties of hybrid laminated bamboo-wood veneer board (hlbwvb) for furniture components, Adv. Mater. Res., 1134, 143, 10.4028/www.scientific.net/AMR.1134.143
Yu, Zi Xuan, Jiang, Ze Hui, Wang, Ge. Moisture absorption of laminated bamboo composite and its influence on mechanical properties. Appl. Mech. Mater., 204-208, 4165-4172. 10.4028/www.scientific.net/AMM.204-208.4165.
Huang, 2017, Assessment of bamboo application in building envelope by comparison with reference timber, Constr. Build. Mater., 156, 844, 10.1016/j.conbuildmat.2017.09.026
Guan, 2018, Development of lightweight overlaid laminated bamboo lumber for structural uses, Constr. Build. Mater., 188, 722, 10.1016/j.conbuildmat.2018.08.107
Deng, Jianchao, Li, Haidong, Wang, Ge, Chen, Fuming, Zhang, Wenfu. . Effect of removing extent of bamboo green on physical and mechanicaln, properties of laminated bamboo-bundle veneer lumber (blvl). Eur. J. Wood Wood Products, 73(4), 499-506. 10.1007/s00107-015-0897-x.
Li, 2017, An empirical model for predicting the mechanical properties degradation of bamboo bundle laminated veneer lumber (BLVL) by hygrothermal aging treatment, Eur. J. Wood Wood Prod., 75, 553, 10.1007/s00107-016-1100-8
Penellum, 2018, Relationship of structure and stiffness in laminated bamboo composites, Constr. Build. Mater., 165, 241, 10.1016/j.conbuildmat.2017.12.166
Setiawan, 2018, Tensile strength improvement of LLBC material for low speed wind turbine rotor blade by varying composite matrix, IOP Conf. Ser. Mater. Sci. Eng., 288, 10.1088/1757-899X/288/1/012013
Jiang, 2006, Application of advanced bio-composites in wind blades, Acta Mater. Compos. Sin., 23, 127
Porras, 2012, Development and characterization of a laminate composite material from polylactic acid (PLA) and woven bamboo fabric, Compos. B Eng., 43, 10.1016/j.compositesb.2012.04.039
Barbosa, 2014, Simulation analysis of in-service bamboo and pine EGP composite flooring, Adv. Mater. Res., 1025–1026, 233, 10.4028/www.scientific.net/AMR.1025-1026.233
Yao, 2003, Flexural behavior of bamboo–fiber-reinforced mortar laminates, Cem. Concr. Res., 33, 15, 10.1016/S0008-8846(02)00909-2
M. Mahdavi, P.L. Clouston, S.R. Arwade. A low-technology approach toward fabrication of laminated bamboo lumber. Constr. Build. Mater. 2012, 29(none):257-262.
R. Siva, M. Anish, S. Yuvaraja, et al. EXPERIMENTAL INVESTIGATION OF STITCHED AND UNSTITCHED BAMBOO FIBER USING SUGARCANE POWDER[J]. Social Science Electronic Publishing.
Li, 2013, Compressive performance of laminated bamboo, Compos. B Eng., 54, 319, 10.1016/j.compositesb.2013.05.035
Li, 2016, Mechanical properties of laminated bamboo lumber column under radial eccentric compression, Constr. Build. Mater., 121, 644, 10.1016/j.conbuildmat.2016.06.031
Li, 2015, Mechanical performance of laminated bamboo column under axial compression, Compos. B Eng., 79, 374, 10.1016/j.compositesb.2015.04.027
Verma, 2014, Comparative study of mechanical properties of bamboo laminae and their laminates with woods and wood based composites, Compos. B Eng., 60, 523, 10.1016/j.compositesb.2013.12.061
Verma, 2012, Development of layered laminate bamboo composite and their mechanical properties, Compos. B Eng., 43, 1063, 10.1016/j.compositesb.2011.11.065
Zhou, 2018, Inelastic bending performances of laminated bamboo beams: Experimental investigation and analytical study, BioResources, 13, 131
Deng et al. Effect of laminated structure design on physical and mechanical properties of laminated bamboo sliver lumber. BioResources, 2019, 14(1), 421-430.
Chu, 2002, Plasma-surface modification of biomaterials, Mater. Sci. Eng. R: Rep., 36, 143, 10.1016/S0927-796X(02)00004-9
Zhao, 2019, Review of plasma-assisted reactions and potential applications for modification of metal—organic frameworks, Front. Chem. Sci. Eng., 13, 444, 10.1007/s11705-019-1811-6
Yang, 2017, O2 plasma etching and anti-static gun surface modifications for cnt yarn microelectrode improve sensitivity and anti-fouling properties, Anal. Chem., 89, 5605, 10.1021/acs.analchem.7b00785
Motrescu, 2010, Modification of peptide by surface-wave plasma processing, Thin Solid Films, 518, 3585, 10.1016/j.tsf.2009.11.029
Hrycak, 2019, Atmospheric pressure microwave argon plasma sheet for wettability modification of polyethylene surfaces, IEEE Trans. Plasma Sci., 47, 1309, 10.1109/TPS.2019.2892061
J. Tyczkowski, I. Krawczyk, B. Wo?Niak (2003). Modification of styrene–butadiene rubber surfaces by plasma chlorination. Surf. Coat. Technol., 174-175(none), 849-853.DOI:10.1016/s0257-8972(03)00419-5.
Holc, 2018, Surface modification and aging of polyacrylonitrile butadiene styrene polymer induced by treatment in RF oxygen plasma, IEEE Trans. Plasma Sci. PSI, 10.1109/TPS.2018.2855808
Canullo, 2018, Hard and soft tissue changes around implants activated using plasma of argon: A histomorphometric study in dog, Clin. Oral Implant Res., 29, 10.1111/clr.13134
Guschl, 2008, Atmospheric oxygen-helium plasma surface modification of medical plastics, IEEE Int. Conf. Plasma Sci., 1
Kim, 2019, Anisotropic atomic layer etching of W using fluorine radicals/oxygen ion beam, Plasma Processes Polym., 16, 10.1002/ppap.201900081
Egitto, 1994, Plasma modification of polymer surfaces for adhesion improvement, IBM Corp, 10.1147/rd.384.0423
H. Akamatsu, K. Ichikawa, K. Azuma, M. Onoi. (2010). Surface modification of material by irradiation of low power atmospheric pressure plasma jet. DOI:10.1063/1.3508571.
Vesel, 2008, Surface modification of polyester by oxygen- and nitrogen-plasma treatment, Surf. Interface Anal., 40, 1444, 10.1002/sia.2923
De Velascocmaldonado, 2019, Cold oxygen plasma induces changes on the surface of carbon materials enhancing methanogenesis and N2O reduction in anaerobic sludge incubations, J. Chem. Technol. Biotechnol., 94
Zhang, 2018, Mechanical properties of the Fe-Al-Nb coating by double glow plasma surface metallurgy, Surf. Rev. Lett., 25, 10.1142/S0218625X19500343
Dineff, 2011, Plasma aided flame retardation of wood, wooden products and cellulosic materials, Adv. Mater. Sci., 11, 28
YáñezPacios, Andrés Jesús, MartínMartínez, José Miguel. Surface modification and improved adhesion of wood-plastic composites (WPCs) made with different polymers by treatment with atmospheric pressure rotating plasma jet. Int. J. Adhes. Adhes., 2017. DOI:P10.1016/j.ijadhadh.2017.06.001.
Martins, 2009, Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance, Small, 5, 1195, 10.1002/smll.200801648
Jiuping, Rao, Lingxiang, Bao, Baowen, et al. (2018). Plasma surface modification and bonding enhancement for bamboo composites. Compos. Part B: Eng. https://doi.org/10.1016/j.compositesb.2017.11.025.
Vesel, 2009, Plasma modification of viscose textile, Vacuum, 84, 79, 10.1016/j.vacuum.2009.04.028
Fujin, Weng. (1991). Research on the production technology of bambo-Woven plywood for building formwork. Acta Bamboica Sinica, 009(002):8-14. (In chinese).
GB. Test Methods of Evaluating the Properties of Wood-based Panels and Surface Decorated Wood-based Panels. Chinese Standard, GB/T 17657, Standards Press of China, Beijing, China, 2013.
GB. ordinary plywood. Chinese Standard, GB/T 9846-2015, Standards Press of China, Beijing, China, 2015.
Eiichi Obataya, Peter Kitin, Hidefumi Yamauchi. Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber-foam composite structure. Wood Sci. Technol., 41(5):p.385-400. https://10.1007/s00226-007-0127-8.
Correal, 2014, Experimental evaluation of physical and mechanical properties of glued laminated guadua angustifolia kunth, Constr. Build. Mater., 73, 105, 10.1016/j.conbuildmat.2014.09.056