Development of in situ polymerized amines into mesoporous silica for direct air CO2 capture

Chemical Engineering Journal - Tập 447 - Trang 137465 - 2022
Akram A. Al-Absi1, Mohanned Mohamedali1, Axelle Domin1, Anne M. Benneker1, Nader Mahinpey1
1Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hepburn, 2019, The technological and economic prospects for CO 2 utilization and removal, Nature., 575, 87, 10.1038/s41586-019-1681-6

Le Quéré, 2016, Earth Syst, Sci. Data., 8, 605

Shawabkeh, 2022, Electrochemical reduction of carbon dioxide to hydrocarbons: techniques and methods, Emerg. Carbon Capture Technol., 161, 10.1016/B978-0-323-89782-2.00004-1

Sanz-Pérez, 2016, Direct capture of CO2 from ambient air, Chem. Rev., 116, 11840, 10.1021/acs.chemrev.6b00173

Rhodes, 2015, The 2015 Paris climate change conference: COP21, Sci. Prog., 99, 97

D. Sandalow, J. Friedmann, C. McCormick, S. McCoy, Direct Air Capture of Carbon Dioxide: ICEF Roadmap 2018, in: Innov. a Cool Earth Forum, December, 2018.

U. (United N.E. Programme), The emissions gap report 2017: A UN environment synthesis report, (2017).

Kua, 2019, Effect of indoor contamination on carbon dioxide adsorption of wood-based biochar–Lessons for direct air capture, J. Clean. Prod., 210, 860, 10.1016/j.jclepro.2018.10.206

Stuckert, 2011, CO2 capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15, Environ. Sci. Technol., 45, 10257, 10.1021/es202647a

Zhao, 2014, Removal of low concentration CO2 at ambient temperature using several potassium-based sorbents, Appl. Energy., 124, 241, 10.1016/j.apenergy.2014.02.054

Madden, 2017, Flue-gas and direct-air capture of CO2 by porous metal–organic materials, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 375, 20160025, 10.1098/rsta.2016.0025

Zhu, 2019, Polyethylenimine-Grafted HKUST-Type MOF/PolyHIPE Porous Composites (PEI@ PGD-H) as Highly Efficient CO2 Adsorbents, Ind. Eng. Chem. Res., 58, 4257, 10.1021/acs.iecr.9b00213

McDonald, 2012, Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2 (dobpdc), J. Am. Chem. Soc., 134, 7056, 10.1021/ja300034j

Kim, 2020, Cooperative carbon capture and steam regeneration with tetraamine-appended metal–organic frameworks, Science, 369, 392, 10.1126/science.abb3976

Mohamedali, 2018, Incorporation of acetate-based ionic liquids into a zeolitic imidazolate framework (ZIF-8) as efficient sorbents for carbon dioxide capture, Chem. Eng. J., 334, 817, 10.1016/j.cej.2017.10.104

Mohamedali, 2019, Markedly improved CO2 uptake using imidazolium-based ionic liquids confined into HKUST-1 frameworks, Microporous Mesoporous Mater., 284, 98, 10.1016/j.micromeso.2019.04.004

Mohamedali, 2019, Investigation of CO 2 capture using acetate-based ionic liquids incorporated into exceptionally porous metal–organic frameworks, Adsorption., 25, 675, 10.1007/s10450-019-00073-x

Nikulshina, 2009, CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor, Chem. Eng. J., 146, 244, 10.1016/j.cej.2008.06.005

Nikulshina, 2008, Feasibility of Na-based thermochemical cycles for the capture of CO2 from air—Thermodynamic and thermogravimetric analyses, Chem. Eng. J., 140, 62, 10.1016/j.cej.2007.09.007

Qi, 2014, Sponges with covalently tethered amines for high-efficiency carbon capture, Nat. Commun., 5, 1, 10.1038/ncomms6796

Rosu, 2020, Effect of Extended Aging and Oxidation on Linear Poly (propylenimine)-Mesoporous Silica Composites for CO2 Capture from Simulated Air and Flue Gas Streams, ACS Appl. Mater. Interfaces., 12, 38085, 10.1021/acsami.0c09554

Didas, 2015, Amine–oxide hybrid materials for CO2 capture from ambient air, Acc. Chem. Res., 48, 2680, 10.1021/acs.accounts.5b00284

Mohamedali, 2020, Imidazolium based ionic liquids confined into mesoporous silica MCM-41 and SBA-15 for carbon dioxide capture, Microporous Mesoporous Mater., 294, 10.1016/j.micromeso.2019.109916

Gelles, 2020, Recent advances in development of amine functionalized adsorbents for CO 2 capture, Adsorption., 26, 5, 10.1007/s10450-019-00151-0

Drese, 2009, Synthesis–structure–property relationships for hyperbranched aminosilica CO2 adsorbents, Adv. Funct. Mater., 19, 3821, 10.1002/adfm.200901461

Choi, 2011, Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air, Environ. Sci. Technol., 45, 2420, 10.1021/es102797w

López-Aranguren, 2015, Hybrid aminopolymer–silica materials for efficient CO 2 adsorption, RSC Adv., 5, 104943, 10.1039/C5RA20583B

Chaikittisilp, 2013, Vapor-phase transport as a novel route to hyperbranched polyamine-oxide hybrid materials, Chem. Mater., 25, 613, 10.1021/cm303931q

Liu, 2015, Covalent grafting of polyethyleneimine on hydroxylated three-dimensional graphene for superior CO 2 capture, J. Mater. Chem. A., 3, 12252, 10.1039/C5TA01536G

Glassner, 2018, Poly (2-oxazoline) s: A comprehensive overview of polymer structures and their physical properties, Polym. Int., 67, 32, 10.1002/pi.5457

Jaeger, 2012, Branched and linear poly (ethylene imine)-based conjugates: synthetic modification, characterization, and application, Chem. Soc. Rev., 41, 4755, 10.1039/c2cs35146c

Mees, 2018, Full and partial hydrolysis of poly (2-oxazoline) s and the subsequent post-polymerization modification of the resulting polyethylenimine (co) polymers, Polym. Chem., 9, 4968, 10.1039/C8PY00978C

Nguyen, 2022, Separation of CO2 and N2 on a hydrophobic metal organic framework CALF-20, Chem. Eng. J., 442, 10.1016/j.cej.2022.136263

Wilkins, 2019, Measurement of competitive CO 2 and N 2 adsorption on Zeolite 13X for post-combustion CO 2 capture, Adsorption., 25, 115, 10.1007/s10450-018-00004-2

Wilkins, 2021, Dynamic column breakthrough experiments for measurement of adsorption equilibrium and kinetics, Adsorption., 27, 397, 10.1007/s10450-020-00269-6

Li, 2015, Polyethyleneimine–nano silica composites: a low-cost and promising adsorbent for CO 2 capture, J. Mater. Chem. A., 3, 2166, 10.1039/C4TA04275A

Díaz, 1997, Synthesis and characterization of cobalt− complex functionalized MCM-41, Chem. Mater., 9, 61, 10.1021/cm960228e

Franville, 2000, Luminescence behavior of sol− gel-derived hybrid materials resulting from covalent grafting of a chromophore unit to different organically modified alkoxysilanes, Chem. Mater., 12, 428, 10.1021/cm9904739

Wahab, 2004, Bridged amine-functionalized mesoporous organosilica materials from 1, 2-bis (triethoxysilyl) ethane and bis [(3-trimethoxysilyl) propyl] amine, J. Solid State Chem., 177, 3439, 10.1016/j.jssc.2004.05.062

Lashaki, 2018, CO2 capture using triamine-grafted SBA-15: The impact of the support pore structure, Chem. Eng. J., 334, 1260, 10.1016/j.cej.2017.10.103

Jahandar Lashaki, 2017, Insights into the Hydrothermal Stability of Triamine-Functionalized SBA-15 Silica for CO2 Adsorption, ChemSusChem., 10, 4037, 10.1002/cssc.201701439

Didas, 2012, Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air, ChemSusChem., 5, 2058, 10.1002/cssc.201200196

Belmabkhout, 2010, Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: application for gas purification, Ind. Eng. Chem. Res., 49, 359, 10.1021/ie900837t

Wagner, 2013, Carbon dioxide capture from ambient air using amine-grafted mesoporous adsorbents, Int. J. Spectrosc., 2013, 1155, 10.1155/2013/690186

Wurzbacher, 2011, Separation of CO2 from air by temperature-vacuum swing adsorption using diamine-functionalized silica gel, Energy Environ. Sci., 4, 3584, 10.1039/c1ee01681d

Loganathan, 2014, CO2 adsorption kinetics on mesoporous silica under wide range of pressure and temperature, Chem. Eng. J., 256, 1, 10.1016/j.cej.2014.06.091

Danckwerts, 1979, The reaction of CO2 with ethanolamines, Chem. Eng. Sci., 34, 443, 10.1016/0009-2509(79)85087-3

Caplow, 1968, Kinetics of carbamate formation and breakdown, J. Am. Chem. Soc., 90, 6795, 10.1021/ja01026a041

Monazam, 2013, Fluid bed adsorption of carbon dioxide on immobilized polyethylenimine (PEI): Kinetic analysis and breakthrough behavior, Chem. Eng. J., 223, 795, 10.1016/j.cej.2013.02.041

S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, (1898).

Liu, 2018, Carbon dioxide adsorption properties and adsorption/desorption kinetics of amine-functionalized KIT-6, Appl. Energy., 211, 1080, 10.1016/j.apenergy.2017.12.016

Saleh, 2017, Kinetics, isotherms and thermodynamic evaluation of amine functionalized magnetic carbon for methyl red removal from aqueous solutions, J. Mol. Liq., 248, 577, 10.1016/j.molliq.2017.10.064

AL-Hammadi, 2018, Poly(trimesoyl chloride-melamine) grafted on palygorskite for simultaneous ultra-trace removal of methylene blue and toxic metals, J. Environ. Manage., 226, 358, 10.1016/j.jenvman.2018.08.025

Pirzadeh, 2020, Strong Influence of Amine Grafting on MIL-101 (Cr) Metal-Organic Framework with Exceptional CO2/N2 Selectivity, Ind. Eng. Chem. Res., 59, 366, 10.1021/acs.iecr.9b05779

Blanchard, 1984, Removal of heavy metals from waters by means of natural zeolites, Water Res., 18, 1501, 10.1016/0043-1354(84)90124-6

Álvarez-Gutiérrez, 2017, Kinetics of CO2 adsorption on cherry stone-based carbons in CO2/CH4 separations, Chem. Eng. J., 307, 249, 10.1016/j.cej.2016.08.077

Lopes, 2003, An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg (II) with thin chitosan membranes, J. Colloid Interface Sci., 263, 542, 10.1016/S0021-9797(03)00326-6

W.J. Weber, J.C. Morris, Advances in water pollution research, in: Proc. First Int. Conf. Water Pollut. Res., Pergamon Press Oxford, 1962: p. 231.

Wu, 2009, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J., 153, 1, 10.1016/j.cej.2009.04.042

Song, 2016, An investigation of CO2 adsorption kinetics on porous magnesium oxide, Chem. Eng. J., 283, 175, 10.1016/j.cej.2015.07.055

Wang, 2015, Tetraethylenepentamine-modified MCM-41/silica gel with hierarchical mesoporous structure for CO2 capture, Chem. Eng. J., 273, 472, 10.1016/j.cej.2015.03.098

Saleh, 2018, Polyamide magnetic palygorskite for the simultaneous removal of Hg (II) and methyl mercury; with factorial design analysis, J. Environ. Manage., 211, 323, 10.1016/j.jenvman.2018.01.050

Fan, 2014, Dynamic CO2 adsorption performance of internally cooled silica-supported poly (ethylenimine) hollow fiber sorbents, AIChE J., 60, 3878, 10.1002/aic.14615

Loganathan, 2017, Amine tethered pore-expanded MCM-41: A promising adsorbent for CO2 capture, Chem. Eng. J., 308, 827, 10.1016/j.cej.2016.09.103

Vanselow, 2012

Lee, 2011, Gravimetric analysis of the adsorption and desorption of CO2 on amine-functionalized mesoporous silica mounted on a microcantilever array, Environ. Sci. Technol., 45, 5704, 10.1021/es200680v

Peeters, 2013, Carbon dioxide as a reversible amine-protecting agent in selective Michael additions and acylations, Green Chem., 15, 1550, 10.1039/c3gc40568k

Yang, 2013, Graphene-based porous silica sheets impregnated with polyethyleneimine for superior CO2 capture, Adv. Mater., 25, 2130, 10.1002/adma.201204427

Al-Azzawi, 2012, Nanosilica-supported polyethoxyamines as low-cost, reversible carbon dioxide sorbents, J. Colloid Interface Sci., 385, 154, 10.1016/j.jcis.2012.07.001

Wang, 2012, Temperature-programmed desorption of CO2 from polyethylenimine-loaded SBA-15 as molecular basket sorbents, Catal. Today., 194, 44, 10.1016/j.cattod.2012.08.008

Xu, 2002, Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture, Energy & Fuels., 16, 1463, 10.1021/ef020058u

Son, 2008, Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials, Microporous Mesoporous Mater., 113, 31, 10.1016/j.micromeso.2007.10.049

Nguyen, 2000, Dual Langmuir kinetic model for adsorption in carbon molecular sieve materials, Langmuir., 16, 1868, 10.1021/la990584m

Sandler, 2017

Myers, 1965, Thermodynamics of mixed-gas adsorption, AIChE J., 11, 121, 10.1002/aic.690110125

Wadi, 2021, Evaluation of Moderately Grafted Primary, Diamine, and Triamine Sorbents for CO2 Adsorption from Ambient Air: Balancing Kinetics and Capacity under Humid Conditions, Ind. Eng. Chem. Res., 60, 13309, 10.1021/acs.iecr.1c02416

Ho, 2020, Adsorption mechanism of methyl iodide by triethylenediamine and quinuclidine-impregnated activated carbons at extremely low pressures, Chem. Eng. J., 396, 10.1016/j.cej.2020.125215

2012

Chaikittisilp, 2011, Poly (L-lysine) Brush-Mesoporous Silica Hybrid Material as a Biomolecule-Based Adsorbent for CO2 Capture from Simulated Flue Gas and Air, Chem. Eur. J., 17, 10556, 10.1002/chem.201101480

Anyanwu, 2020, Amine-grafted silica gels for CO2 capture including direct air capture, Ind. Eng. Chem. Res., 59, 7072, 10.1021/acs.iecr.9b05228