Development of graphene-based sensors on paper substrate for the measurement of pH value of analyte
Tóm tắt
Từ khóa
Tài liệu tham khảo
Novoselov, K.S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. & Gein, A.K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
Kim, K. et al. Electric property evolution of structurally defected multilayer graphene. Nano Lett. 8, 3092–3096 (2008).
Liu, Y. et al. Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material. Carbon 47, 3113–3121 (2009).
Bolotin, K.I., Sikes, K.J., Hone, J., Stormer, H.L. & Kim, P. Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101, 096802 (2008).
Tsoukleri, G. et al. Subjecting a graphene monolayer to tension and compression. Small 5, 2397–2402 (2009).
Nair, R.R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008).
Pop, E., Varshney, V. & Roy, A.K. Thermal properties of graphene: Fundamentals and applications. MRS Bulletin 37, 1273–1281 (2012).
Dean, C.R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).
Wei, Z. et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328, 1373–1376 (2010).
Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010).
Eda, G. & Chhowalla, M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010).
Yang, Y., Asiri, A.M., Tang, Z., Du, D. & Lin, Y. Graphene based materials for biomedical applications. Mater. Today 16, 365–373 (2013).
Bitounis, D., Ali-Boucetta, H., Hong, B.H., Min, D.H. & Kostarelos, K. Prospects and challenges of graphene in biomedical applications. Adv. Mater. 25, 2258–2268 (2013).
Lei, K.F. Microfluidic systems for diagnostic applications: A review. JALA 17, 330–347 (2012).
Mairhofer, J., Rpooert, K. & Ertl, P. Microfluidic systems for pathogen sensing: A review. Sensors 9, 4804–4823 (2009).
Lei, K.F. & But, Y.K.C. Colorimetric immunoassay chip based on gold nanoparticles and gold enhancement. Microfluid. Nanofluid. 8, 131–137 (2010).
Lei, K.F. Quantitative electrical detection of immobilized protein using gold nanoparticles and gold nanoparticles and gold enhancement on a biochip. Meas. Sci. Technol. 22, 105802 (2011).
Lei, K.F., Liu, J.L., Huang, C.H., Kuo, R.L. & Tsang, N.M. A reagent-ready-on-chip microfluidic immunoassay system for rapid detection of influenza A H1N1 and H3N2 viruses. BioChip J. 10, 34–41 (2016).
Yager, P. et al. Microfluidic diagnostic technologies for global public health. Nature 442, 412–418 (2006).
Martinez, A.W., Phillips, S.T. & Whitesides, G.M. Diagnostics for the developing world: Microfluidic paperbased analytical devices. Anal. Chem. 82, 3–10 (2010).
Yetisen, A.K., Akram, M.S. & Lowe, C.R. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13, 2210–2251 (2013).
Martinez, A.W. et al. Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 80, 3699–3707 (2008).
Dungchai, W., Challapakul, O. & Henry, C.S. Electrochemical detection for paper-based microfluidics. Anal. Chem. 81, 5821–5826 (2009).
Zhou, P. et al. Nanocolloidal gold-based immunoassay for the detection of the Nmethylcarbamate pesticide carbofuran. J. Agric. Food Chem. 52, 4355–4359 (2004).
Glynou, K., Ioannou, P.C., Christopoulos, T.K. & Syriopoulou, V. Oligonucleotide-functionalized gold nanoparticles as probes in a dryreagent strip biosensor for DNA analysis by hybridization. Anal. Chem. 75, 4155–4160 (2003).
Zhang, W.Y. et al. Nanoparticle-based immunochromatographic test strip with fluorescent detector for quantification of phosphorylated acetylcholinesterase: An exposure biomarker of organophosphorus agents. Analyst 138, 5431–5436 (2013).
Liu, G.D. et al. Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip. Anal. Chem. 79, 7644–7653 (2007).
Wu, Y.F., Xue, P., Kang, Y.J. & Hui, K.M. Paper-based microfluidic electrochemical immunodevice integrated with nanobioprobes onto graphene film for ultrasensitive multiplexed detection of cancer biomarkers. Anal. Chem. 85, 8661–8668 (2013).
Jokerst, J.C. et al. Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Anal. Chem. 84, 2900–2907 (2012).
Lei, K.F. et al. Paper-based enzyme-free immunoassay for rapid detection and subtyping of influenza A H1N1 and H3N2 viruses. Anal. Chim. Acta 883, 37–44 (2015).
Lei, K.F. & Yang, S.I. Bundled carbon nanotube-based sensor on paper-based microfluidic device. J. Nanosci. Nanotechnol. 13, 6917–6923 (2013).
Lei, K.F., Lee, K.F. & Yang, S.I. Fabrication of carbon nanotube-based pH sensor for paper-based microfluidics. Microelectron. Eng. 100, 1–5 (2012).
Lei, K.F., Yang, S.I., Tsai, S.W. & Hsu, H.Y. Paperbased microfluidic sensing device for label-free immunoassay demonstrated by biotin-avidin binding interaction. Talanta 134, 264–270 (2015).