Development of glass–ceramic scaffolds for bone tissue engineering: Characterisation, proliferation of human osteoblasts and nodule formation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Navarro, 2004, New macroporous calcium phosphate glass ceramic for guided bone regeneration, Biomaterials, 25, 4233, 10.1016/j.biomaterials.2003.11.012
Sepulveda, 2002, Bioactive sol–gel foams for tissue repair, J Biomed Mater Res, 59, 340, 10.1002/jbm.1250
Lee, 2001, Tissue-engineered growth of bone by marrow cell transplantation using porous calcium metaphosphates matrices, J Biomed Mater Res, 54, 216, 10.1002/1097-4636(200102)54:2<216::AID-JBM8>3.0.CO;2-C
Martina, 2005, Developing macroporous bicontinuous materials as scaffolds for tissue engineering, Biomaterials, 26, 5609, 10.1016/j.biomaterials.2005.02.011
Rodrigues, 2004, Characterisation of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering, Biomaterials, 24, 4987, 10.1016/S0142-9612(03)00410-1
Green, 2002, The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons, Bone, 30, 810, 10.1016/S8756-3282(02)00727-5
Aichelmann-Reidy, 1998, Bone replacement grafts. The bone substitutes, Dent Clin N Am, 42, 491, 10.1016/S0011-8532(22)00579-1
Banwart, 1995, Iliac crest bone graft harvest donor site morbidity. A statistical evaluation, Spine, 20, 1055, 10.1097/00007632-199505000-00012
Younger, 1989, Morbidity at bone graft donor sites, J Orthop Trauma, 3, 192, 10.1097/00005131-198909000-00002
Helm, 2001, Bone graft substitutes for the promotion of spinal arthrodesis, Neurosurg Focus, 10, 10.3171/foc.2001.10.4.5
Jones, 2003, Regeneration of trabecular bone using porous ceramics, Curr Opin Solid State Mater Sci, 7, 301, 10.1016/j.cossms.2003.09.012
Gauthier, 1998, Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth, Biomaterials, 11, 133, 10.1016/S0142-9612(97)00180-4
Karageorgiou, 2005, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 26, 5474, 10.1016/j.biomaterials.2005.02.002
Hench, 1997, Sol-gel materials for bioceramic applications, Curr Opin Solid State Mater Sci, 2, 604, 10.1016/S1359-0286(97)80053-8
Cong, 2001, Repairing segmental bone defects with living porous ceramic cylinders: an experimental study in dog femora, J Biomed Mater Res, 55, 28, 10.1002/1097-4636(200104)55:1<28::AID-JBM40>3.0.CO;2-6
De Aza, 2003, Mechanism of bone-like formation on a bioactive implant in vivo, Biomaterials, 24, 1437, 10.1016/S0142-9612(02)00530-6
Livingston, 2002, In vivo evaluation of a bioactive scaffold for bone tissue engineering, J Biomed Mater Res, 62, 1, 10.1002/jbm.10157
Prado da Silva, 2002, Porous glass reinforced hydroxyapatite materials produced with different organic additives, J Non-cryst Solids, 304, 286, 10.1016/S0022-3093(02)01036-0
Vormann, 2003, Magnesium: nutrition and metabolism, Mol Aspects Med, 24, 27, 10.1016/S0098-2997(02)00089-4
Jallot, 2003, Role of magnesium during spontaneous formation of a calcium phosphate layer at the periphery of a bioactive glass coating doped with MgO, Appl Surf Sci, 21, 89, 10.1016/S0169-4332(03)00179-X
Xynos, 2000, Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis, Biochem Bioph Res Co, 276, 461, 10.1006/bbrc.2000.3503
Xynos, 2000, Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution, J Biomed Mater Res, 155, 151, 10.1002/1097-4636(200105)55:2<151::AID-JBM1001>3.0.CO;2-D
Lemos, 2000, Porous bioactive calcium carbonate implants processed by starch consolidation, Mater Sci Eng C, 11, 35, 10.1016/S0928-4931(00)00134-X
Vitale-Brovarone, 2004, Macroporous glass–ceramic materials with bioactive properties, J Mater Sci: Mater Med, 15, 209, 10.1023/B:JMSM.0000015480.49061.e1
Vitale-Brovarone, 2005, Microstructural and in vitro characterisation of SiO2–Na2O–CaO–MgO glass–ceramic bioactive scaffolds for bone substitute, J Mater Sci: Mater Med, 16, 909, 10.1007/s10856-005-4425-0
Vitale-Brovarone C, Verné E, Appendino P. Macroporous bioactive glass–ceramic scaffolds for tissue engineering. J Mater Sci: Mater Med, in press.
Sepulveda, 1999, Processing of cellular foams by foaming and in situ polymerisation of organic monomers, J Eur Ceram Soc, 2059, 10.1016/S0955-2219(99)00024-2
Ramay, 2003, Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods, Biomaterials, 24, 3293, 10.1016/S0142-9612(03)00171-6
Sepulveda, 2000, Production of porous hydroxyapatite by the gel-casting of foams and cytotoxic evaluation, J Biomed Mater Res, 50, 27, 10.1002/(SICI)1097-4636(200004)50:1<27::AID-JBM5>3.0.CO;2-6
Landi, 2003, Carbonated hydroxyapatite as bone substitute, J Eur Cer Soc, 23, 2931, 10.1016/S0955-2219(03)00304-2
Li, 2002, Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering, J Biomed Mater Res, 61, 109, 10.1002/jbm.10163
Rengachary, 2002, Bone morphogenetic proteins: basic concepts, Neurosurg Focus, 13, 1, 10.3171/foc.2002.13.6.3
Kirker-Head, 2003, Potential applications and delivery strategies for bone morphogenetic proteins, Adv Drug Deliv Rev, 43, 65, 10.1016/S0169-409X(00)00078-8
Ripamonti, 1998, Tissue morphogenesis and regeneration by bone morphogenetic proteins, Plast Reconstr Surg, 101, 227, 10.1097/00006534-199801000-00040
Vitale-Brovarone C, Verné E, Robiglio L, Martinasso G, Canuto R, Muzio G. Biocompatible glass–ceramic materials for bone substitution. J Mater Sci: Mater Med, submitted.
Kornberg, 1955, Lactic dehydrogenase of muscle, vol. 1, 441