Phát triển các bộ phát hiện sợi quang có điều khiển cho các môi trường xung điện từ mạnh do tia laze gây ra
Tóm tắt
Với sự phát triển của công nghệ laser, các phản ứng hạt nhân có thể xảy ra trong các môi trường plasma nhiệt độ cao được tạo ra bởi laser và đã thu hút được nhiều sự chú ý từ các lĩnh vực vật lý khác nhau. Tuy nhiên, các nghiên cứu về phản ứng hạt nhân trong plasma vẫn bị giới hạn bởi công nghệ phát hiện. Nguyên nhân chủ yếu là do các xung điện từ cực kỳ mạnh (EMP) cũng có thể được tạo ra khi các tia laser cường độ cao tác động vào các vật thể để kích thích plasma, dẫn đến việc nhiều loại bộ phát hiện truyền thống bị mất chức năng. Do đó, rất cần thiết phải phát triển các công nghệ phát hiện hạt mới. Trong bài báo này, chúng tôi báo cáo về một bộ phát hiện sợi quang có điều khiển mới được phát triển gần đây có thể được sử dụng trong các môi trường EMP khắc nghiệt. Trong bộ phát hiện prototype này, các photon huỳnh quang được ghép với sợi quang và sau đó được chuyển tới một ống photomultiplier có điều khiển nằm ở xa nguồn EMP và được bảo vệ tốt. Với các biện pháp đó, các EMP có thể được tránh, giúp cho thiết bị có khả năng nhận diện một sự kiện đơn lẻ của các sản phẩm phản ứng hạt nhân được sinh ra trong plasma do laser gây ra từ các tín hiệu nền EMP gây nhiễu. Loại bộ phát hiện mới này có thể được sử dụng rộng rãi như một bộ phát hiện thời gian bay (TOF) trong các thí nghiệm vật lý hạt nhân laser cường độ cao để phát hiện neutron, photon và các hạt mang điện khác.
Từ khóa
#laser технологии; phản ứng hạt nhân; plasma; xung điện từ mạnh; bộ phát hiện sợi quang; photomultiplier tube; neutronTài liệu tham khảo
T. Ditmire, J.W.G. Tisch, E. Springate et al., High-energy ions produced in explosions of superheated atomic clusters. Nature 386, 54–56 (1997). https://doi.org/10.1038/386054a0
T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979). https://doi.org/10.1103/PhysRevLett.43.267
C.B. Fu, J. Bao, L.M. Chen et al., Laser-driven plasma collider for nuclear studies. Sci. Bull. 60, 1211–1213 (2015). https://doi.org/10.1007/s11434-015-0821-0
D. Klir, J. Krasa, J. Cikhardt et al., Efficient neutron production from sub-nanosecond laser pulse accelerating deuterons on target front side. Phys. Plasmas 22, 093117 (2015). https://doi.org/10.1063/1.4931460
D.L. Balabanski, R. Popescu, D. Stutman et al., New light in nuclear physics: the extreme light infrastructure. Europhys. Lett. 117, 28001 (2017). https://doi.org/10.1209/0295-5075/117/28001
X. Zhang, J. Zhao, D. Yuan et al., Deuteron-deuteron fusion in laser-driven counter-streaming collisionless plasmas. Phys. Rev. C 96, 055801 (2017). https://doi.org/10.1103/PhysRevC.96.055801
Y.-X. Geng, Q. Liao, Y.-R. Shou et al., Generating proton beams exceeding 10 MeV using high contrast 60 TW laser. Chin. Phys. Lett. 35, 092901 (2018). https://doi.org/10.1088/0256-307x/35/9/092901
Z.G. Ma, H.Y. Lan, W.Y. Liu et al., Photonuclear production of medical isotopes 62,64Cu using intense laser-plasma electron source. Matter Radiat. Extremes 4, 064401 (2019). https://doi.org/10.1063/1.5100925
W. Luo, W.Y. Liu, T. Yuan et al., QED cascade saturation in extreme high fields. Sci. Rep. 8, 8400 (2018). https://doi.org/10.1038/s41598-018-26785-8
X.L. Wang, Z.Y. Xu, W. Luo et al., Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator. Phys. Plasmas 24, 093105 (2017). https://doi.org/10.1063/1.4998470
J. Nuckolls, L. Wood, A. Thiessen et al., Laser compression of matter to super-high densities: thermonuclear (CTR) applications. Nature 239, 139–142 (1972). https://doi.org/10.1038/239139a0
J. Zweiback, R.A. Smith, T.E. Cowan et al., Nuclear fusion driven by coulomb explosions of large deuterium clusters. Phys. Rev. Lett. 84, 2634 (2000). https://doi.org/10.1103/PhysRevLett.84.2634
L. Torrisi, S. Cavallaro, M. Cutroneo et al., Deuterium-deuterium nuclear reaction induced by high intensity laser pulses. Appl. Surf. Sci. 272, 42–45 (2013). https://doi.org/10.1016/j.apsusc.2012.02.077
V.Y. Bychenkov, V.T. Tikhonchuk, S.V. Tolokon-nikov, Nuclear reactions triggered by laser-accelerated high-energy ions. J. Exp. Theor. Phys. 88, 1137–1142 (1999). https://doi.org/10.1134/1.558902
S. Tavernier, Experimental Techniques in Nuclear and Particle Physics (Springer Science & Business Media, NewYork, 2010)
Y.-F. He, X.-F. Xi, S.-L. Guo et al., Calibration of CR-39 solid-state track detectors for study of laser-driven nuclear reactions. Nucl. Sci. Tech. 31, 42 (2020). https://doi.org/10.1007/s41365-020-0749-1
M.-H. Wang, J.-L. Qu, M. Zhu, Partially overlapped dual laser beams to reduce ablation craters. Chin. Phys. Lett. 37, 015202 (2020). https://doi.org/10.1088/0256-307X/37/1/015202
S.-K. He, J.-L. Jiao, Z.-G. Deng et al., Generation of ultrahigh-velocity collisionless electrostatic shocks using an ultra-intense laser pulse interacting with foil-gas target. Chin. Phys. Lett. 36, 105201 (2019). https://doi.org/10.1088/0256-307x/36/10/105201
F. Consoli, V.T. Tikhonchuk, M. Bardon et al., Laser produced electromagnetic pulses: generation, detection and mitigation. High Power Laser Sci Eng 8, e22 (2020). https://doi.org/10.1017/hpl.2020.13
T.W. Jeong, P.K. Singh, C. Scullion et al., CR-39 track detector for multi-MeV ion spectroscopy. Sci. Rep. 7, 2152 (2017). https://doi.org/10.1038/s41598-017-02331-w
Y. Zhang, H.-W. Wang, Y.-G. Ma et al., Energy calibration of a CR-39 nuclear-track detector irradiated by charged particles. Nucl. Sci. Tech. 30, 87 (2019). https://doi.org/10.1007/s41365-019-0619-x
Y. Zhang, L.-X. Liu, H.-W. Wang et al., Primary yields of protons measured using CR-39 in laser-induced deuteron-deuteron fusion reactions. Nucl. Sci. Tech. 31, 62 (2020). https://doi.org/10.1007/s41365-020-00769-8
E. Awad, M. Rana, M. Al-Jubbori, Bulk etch rates of CR-39 at high etchant concentrations: diffusion-limited etching. Nucl. Sci. Tech. 31, 118 (2020). https://doi.org/10.1007/s41365-020-00830-6
L. Zhao, Z.-J. Chen, H.-B. Sang et al., Spatial characteristics of thomson scattering spectra in laser and magnetic fields. Chin. Phys. Lett. 36, 074101 (2019). https://doi.org/10.1088/0256-307X/36/7/074101
G. Di. Giorgio, F. Consoli, R. De. Angelis et al., Development of advanced Thomson spectrometers for nuclear fusion experiments initiated by laser. J. Instrum. 15, C10013 (2020). https://doi.org/10.1088/1748-0221/15/10/C10013
C. Fu, Q. Tang, D. Fang et al., Proton energy detectors for environments of high intensity electromagnetic pulses. Patent application in process under No. CN112099072A, 2020
T. Tajima, G. Mourou, Zettawatt-exawatt lasers and their applications in ultrastrong-field physics. Phys. Rev. Spec. Top. Accel. Beams 5, 031301 (2002). https://doi.org/10.1103/PhysRevSTAB.5.031301
M. Janecek, W. Moses, Optical reflectance measurements for commonly used reflectors. IEEE Trans. Nucl. Sci. 55, 2432–2437 (2008). https://doi.org/10.1109/TNS.2008.2001408
M. Janecek, Reflectivity spectra for commonly used reflectors. IEEE Trans. Nucl. Sci. 59, 490–497 (2012). https://doi.org/10.1109/TNS.2012.2183385
M.N. Ullah, E. Pratiwi, J.H. Park et al., Studies on sub-millimeter LYSO:Ce, Ce:GAGG, and a new Ce:GFAG block detector for PET using digital silicon photomultiplier. Nucl. Instrum. Methods A 911, 115–122 (2018). https://doi.org/10.1016/j.nima.2018.09.029
J.B. Schutt, J.F. Arens, C.M. Shai et al., Highly reflecting stable white paint for the detection of ultraviolet and visible radiations. Appl. Opt. 13, 2218 (1974). https://doi.org/10.1364/AO.13.002218
F. Grum, G.W. Luckey, Optical sphere paint and a working standard of reflectance. Appl. Opt. 7, 2289 (1968). https://doi.org/10.1364/AO.7.002289