Development of explanatory movies for the delineation of new organs at risk in neuro-oncology

Clinical and Translational Radiation Oncology - Tập 33 - Trang 112-114 - 2022
Dario Di Perri1, David Hofstede1, Alida Postma2, Catharina M.L. Zegers1, Lieke In't Ven1, Frank Hoebers1, Wouter van Elmpt1, Lindsey Verheesen1, Hilde Beurskens1, Esther G.C. Troost3,4,5,6,7, Inge Compter1, Danielle B.P. Eekers1
1Department of Radiation Oncology (Maastro), Maastricht University Medical Center+, GROW School for Oncology, Maastricht, the Netherlands
2Department of Radiology and Nuclear Medicine MUMC+, Maastricht, the Netherlands
3Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
4Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
5OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
6German Cancer Consortium (DKTK), Partnersite Dresden and German Cancer Research Center (DKFZ), Germany
7National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR)

Tài liệu tham khảo

Eekers, 2017, EPTN international neurological contouring atlas, CancerData Eekers, 2018, The EPTN consensus-based atlas for CT- and MR-based contouring in neuro-oncology, Radiother Oncol, 128, 37, 10.1016/j.radonc.2017.12.013 Lambrecht, 2018, Radiation dose constraints for organs at risk in neuro-oncology; the European Particle Therapy Network consensus, Radiother Oncol, 128, 26, 10.1016/j.radonc.2018.05.001 Eekers, 2021, Update of the EPTN atlas for CT- and MR-based contouring in Neuro-Oncology, Radiother Oncol, 160, 259, 10.1016/j.radonc.2021.05.013 Eekers, 2021, EPTN international neurological contouring atlas - 2021 update, CancerData Redmond, 2018, Association of neuronal injury in the genu and body of corpus callosum after cranial irradiation in children with impaired cognitive control: a prospective study, Int J Radiat Oncol Biol Phys, 101, 1234, 10.1016/j.ijrobp.2018.04.037 Haldbo-Classen, 2020, Cognitive impairment following radiation to hippocampus and other brain structures in adults with primary brain tumours, Radiother Oncol, 148, 1, 10.1016/j.radonc.2020.03.023 Huynh-Le, 2021, Microstructural injury to corpus callosum and intra-hemispheric white matter tracts correlate with attention and processing speed decline after brain radiation, Int J Radiat Oncol Biol Phys, 110, 337, 10.1016/j.ijrobp.2020.12.046 Nagtegaal, 2021, Dose-dependent volume loss in subcortical deep grey matter structures after cranial radiotherapy, Clin Transl Radiat Oncol., 26, 35, 10.1016/j.ctro.2020.11.005 Malik, 2021, Optimizing e-learning in oncology during the COVID-19 pandemic and beyond, Radiat Oncol J., 39, 1, 10.3857/roj.2020.00710 Hofstede, 2022, EPTN International Neurological Contouring Atlas (INCA) instruction videos, CancerData Offersen, 2016, ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer, version 1.1, Radiother Oncol, 118, 205, 10.1016/j.radonc.2015.12.027 Hall, 2021, NRG oncology updated international consensus atlas on pelvic lymph node volumes for intact and postoperative prostate cancer, Int J Radiat Oncol Biol Phys, 109, 174, 10.1016/j.ijrobp.2020.08.034 Gregoire V, Ang K, Budach W, et al. Delineation of the neck node levels for head and neck tumors: a 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines. Radiother Oncol 2014;110(1):172-81. Brouwer, 2015, CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines, Radiother Oncol, 117, 83, 10.1016/j.radonc.2015.07.041 Fuller, 2011, Prospective randomized double-blind pilot study of site-specific consensus atlas implementation for rectal cancer target volume delineation in the cooperative group setting, Int J Radiat Oncol Biol Phys, 79, 481, 10.1016/j.ijrobp.2009.11.012 Mavroidis, 2014, Consequences of anorectal cancer atlas implementation in the cooperative group setting: radiobiologic analysis of a prospective randomized in silico target delineation study, Radiother Oncol, 112, 418, 10.1016/j.radonc.2014.05.011 Gillespie, 2017, Multi-institutional randomized trial testing the utility of an interactive three-dimensional contouring atlas among radiation oncology residents, Int J Radiat Oncol Biol Phys, 98, 547, 10.1016/j.ijrobp.2016.11.050 Hague, 2019, Use of a novel atlas for muscles of mastication to reduce inter observer variability in head and neck radiotherapy contouring, Radiother Oncol, 130, 56, 10.1016/j.radonc.2018.10.030 Green, 2019, The utilization of video technology in surgical education: a systematic review, J Surg Res, 235, 171, 10.1016/j.jss.2018.09.015 van der Veen, 2019, Benefits of deep learning for delineation of organs at risk in head and neck cancer, Radiother Oncol, 138, 68, 10.1016/j.radonc.2019.05.010