Development of environmental friendly high performance Cs2TiBr6 based perovskite solar cell using numerical simulation

Applied Surface Science Advances - Tập 15 - Trang 100394 - 2023
P. Arockia Michael Mercy1, K.S. Joseph Wilson1
1PG & Research Department of Physics, Arul Anandar College, Madurai Kamaraj University, Madurai, 625514, Tamilnadu, India

Tài liệu tham khảo

Kabir, 2018, ‘Solar energy: potential and future prospects, Renew. Sustain. Energy Rev., 82, 894, 10.1016/j.rser.2017.09.094 Wang, 2017, Environmental friendly technology for aluminum electrolytic capacitors recycling from waste printed circuit boards, J. Hazard. Mater., 326, 1, 10.1016/j.jhazmat.2016.10.039 Mehrabian, 2021, Simulating the thickness effect of the graphene oxide layer in CsPbBr3- based solar cells Masood Mater, Res. Express,, 8 Yang, 2021, Inorganic top electron transport layer for high performance inverted perovskite solar cells, EcoMat, 3, 10.1002/eom2.12127 Gao, 2014, Thioredoxin-interacting protein mediates NALP3 inflammasome activation in podocytes during diabetic nephropathy Biochim, Et Biophys. Acta, 10.1016/j.bbamcr.2014.07.001 Chen, 2015, Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications, Nano Today, 10.1016/j.nantod.2015.04.009 Green, 2009, The path to 25% Silicon Solar Cell efficiency: history of silicon cell evolution, Prog. Photovolt. Res. Appl., 17, 183, 10.1002/pip.892 Pizzini, 2010, Towards solar grade silicon: challenges and benefits for low cost photovoltaics, Sol. Energy Mater. Sol. Cells, 94, 1528, 10.1016/j.solmat.2010.01.016 A. Zekry et al., Solar Cells and Arrays: principles, Analysis, and Design, Chapter 1, 2018. J. Poortmans et al.Thin Film Solar Cells: fabrication (Characterization and Applications) 2006. Kojima, 2009, Organo metal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 10.1021/ja809598r Park, 2013, Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell, J. Phys. Chem. Lett., 4, 2423, 10.1021/jz400892a Liao, 2016, Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22, Adv. Mater., 28, 9333, 10.1002/adma.201602992 Green, 2018, Solar cell efficiency tables (version 52), Prog. Photovolt.: Res. Appl. A. Smets, K. Jäger, O. Isabella, R. Swaaij, M. Zeman. Solar Energy: the Physics and Engineering of Photovoltatics, 2016. Tohidul Islam, 2021, Numerical simulation studies of Cs3Bi2I9 perovskite solar device with optimal selection of electron and hole transport layers, Optik (Stuttg), 231 Alam, 2020, Effect of different device parameters on tin-based perovskite solar cell coupled with In2S3 electron transport layer and Cuscn and spiro-ometad alternative hole transport layers for high-efficiency performance, Energy Source., Part A Recover. Util. Environ. Effects Alam, 2021, Numerical simulation of Cs2AgBiBr6-based perovskite solar cell with ZnO nanorod and P3HT as the charge transport layers, Phys. B Condens. Matter, 618, 10.1016/j.physb.2021.413187 M. Burgelman, “Models for the Optical Absorption of Materials in SCAPS,”pp.1–13,2018. Babayigit, 2016, Toxicity of Organometal Halide Perovskite Solar cells, Nat. Mater., 15, 247, 10.1038/nmat4572 Luan, 2021, Dual-function interface engineering for efficient perovskite solar cells, EcoMat, 3, 10.1002/eom2.12092 Gopi Chandra AdhikariORCID,Saroj Thapa,Yang Yue,Hongyang Zhu and Peifen Zhu, Near unity PLQY and high stability of barium thiocyanate based all-inorganic perovskites and their applications in white light-emitting diodes, Photonics, 8(6), 209;2021. BaiqianWang, 2022, Stable yellow light emission from lead-free copper halides single crystals for visible light communication, Nano Materials Science Giustino, 2016, Toward Lead-Free Perovskite Solar Cells, ACS Energy Lett, 1, 1233, 10.1021/acsenergylett.6b00499 Chen, 2018, Cesium titanium(IV) bromide thin films based stable lead-free perovskite solar cells, . Joule, 2, 558, 10.1016/j.joule.2018.01.009 Wang, 2020, Is Cs2TiBr6 a promising Pb-free perovskite for solar energy applications?, J. Mater. Chem. A Slami, 2019, Numerical study of based perovskite solar cells by SCAPS-1D, Int. J. Energy Environ., 13, 17 Ju, 2018, Earth-abundant nontoxic titanium(IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications, ACS Energy Lett., 3, 297, 10.1021/acsenergylett.7b01167 Pecunia, 2020, Lead-free halide perovskite photovoltaics: challenges, open questions, and opportunities, APL Mater., 8, 10.1063/5.0022271 Grandhi, 2021, Lead-free cesium titanium bromide double perovskite nanocrystals, Nanomaterials, 11, 1458, 10.3390/nano11061458 Chen, 2016, ‘Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells, Adv.Mater, 28, 10718, 10.1002/adma.201604048 A.A. Said, J. Xie, and Q. Zhang, ‘‘Recent progress in organic electron transport materials in inverted perovskite solar cells,’’ Small, 15, 2019. Pitchaiya, 2020, ‘A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application, Arabian J. Chem., 13, 2526, 10.1016/j.arabjc.2018.06.006 Gu, 2016, ‘An azaacene derivative as promising electron-transport layer for inverted perovskite solar cells, Chem.-Asian J, 11, 2135, 10.1002/asia.201600856 Li, 2021, A brief review of hole transporting materials commonly used in perovskite solar cell, Rare Met, 40, 2712, 10.1007/s12598-020-01691-z Azri, 2019, Amjad Meftah, Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell, Solar Energy, 181, 372, 10.1016/j.solener.2019.02.017 Bishnoi, 2018, Device performance analysis for lead-free perovskite solar cell optimization, IET Optoelectron, 12, 185, 10.1049/iet-opt.2017.0135 Rai, 2020, Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation, Journal of Materials Science: Materials in Electronics, 31, 16269 J.A. Owolabi, M.Y. Onimisi, J.A. Ukwenya, A.B. Bature, U.R. Ushielepan, Investigating the effect of ZnSe (ETM) and Cu2O (HTM) on absorber layer on the performance of pervoskite solar cell using SCAPS-1D, pp. 8–18, 2020. Salah, 2019, A comparative study of different ETMs in perovskite solar cell with inorganic copper iodide as HTM, Optik (Stuttg), 178, 958, 10.1016/j.ijleo.2018.10.052 Qi, 2015, Enhanced power conversion efficiency of CdS quantum dot sensitized solar cells with ZnO nanowire arrays as the photoanodes, Opt. Commun., 349, 198, 10.1016/j.optcom.2015.03.060 Burgelman, 2000, ‘Modelling polycrystalline semiconductor solar cells, Thin Solid Films, 6, 361 Wang, 2020, ‘Novel inorganic electron transport layers for planar perovskite solar cells: progress and prospective, Nano Energy, 68, 10.1016/j.nanoen.2019.104289 Verschraegen, 2007, ‘Numerical modeling of intra-band tunneling for heterojunction solar cells in SCAPS, Thin Solid Films, 515, 6276, 10.1016/j.tsf.2006.12.049 Md Rafsun, 2020, Exploring solar cell performance of inorganic Cs2TiBr6 halide double perovskite: a numerical study, Superlatt. Microstruct. Hossain, 2015, Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells, Sol. Energy, 120, 370, 10.1016/j.solener.2015.07.040 Shasti, 2019, Numerical study of Cu2O, SrCu2O2, and CuAlO2 as holetransport materials for application in perovskite solar cells, Phys. Status Solidi Appl. Mater. Sci., 216, 1 Teimouri, 2018, Potential application of CuSbS2 as the hole transport material in perovskite solar cell: a simulation study, Superlattice. Microst., 118, 116, 10.1016/j.spmi.2018.03.079 Mandadapu, 2017, Simulation and analysis of lead based perovskite solar cell using SCAPS-1D, Indian J. Sci. Technol., 10, 1, 10.17485/ijst/2017/v11i10/110721 Radhakrishnanb, 2020, Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation, Solar Energy, 196, 177, 10.1016/j.solener.2019.12.014 Shahiduzzaman, 2015, Enhanced photovoltaic performance of perovskite solar cells via modification of surface characteristics using a fullerene interlayer, Chem. Lett., 10.1246/cl.150814 Joachim, 2004, TCO and light trapping silicon thin film solar cells, Science Direct, 77, 917 Gordon, 2000, Criteria for choosing transparent conductors, MRS Bull., 25, 52, 10.1557/mrs2000.151 Chadel, 2017, Thickness optimization of the ZnO based TCO layer in a CZTSSe solar cell. Evolution of its performance with thickness when external temperature changes, Journal of Physics: Conference Series, 879 Tabu, 2021, MinaGuli Degradation mechanism and addressing techniques of thermal instability in halide perovskite solar cells, Solar Energy, 230, 954, 10.1016/j.solener.2021.10.070 and, 2018, Cesium titanium (IV) bromide thin films based stable lead-free perovskite solar cells, Joule, 2, 558, 10.1016/j.joule.2018.01.009 Md Rafsun, 2020, Exploring solar cell performance of inorganic Cs2TiBr6 halide double perovskite: a numerical study, Superlatt. Microstruct., 146 2021, Numerical development of eco-friendly Cs2TiBr6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D, Optik (Stuttg), 225 Moiz, 2021, Abdulah Jeza Aljohani, Design of a Novel Lead-Free Perovskite Solar Cell for 17.83% Efficiency, IEEE Access, 9, 10.1109/ACCESS.2021.3070112 Syed Abdul Moiz, Optimization of hole and electron transport layer for highly efficient lead-free Cs2TiBr6-based perovskite solar cell, Photonics, 9, 23 2022. Mottakin, 2023, Photoelectric performance of environmentally benign Cs2TiBr6-based perovskite solar cell using spinel NiCo2O4 as HTL, Optik (Stuttg), 272