Development of apatite‐type oxide ion conductors

Chemical Record - Tập 4 Số 6 - Trang 373-384 - 2004
Peter R. Slater1, Jonathan E.H. Sansom1, Julian R. Tolchard1
1Materials Chemistry Group, Chemistry, SBMS, University of Surrey, Guildford, GU2 7XH, Surrey, UK.

Tóm tắt

AbstractResearch into materials displaying oxide ion conductivity is attracting considerable attention due to their potential technological applications in devices such as Solid Oxide Fuel Cells. In this paper, recent work on apatite‐type oxide ion conductors is reviewed, showing that a wide range of cation substitutions are possible, due to the flexibility of the apatite structure in accommodating a range of ion sizes. The conductivity studies on these doped samples show that to achieve high oxide ion conduction, non‐stoichiometry in terms of cation vacancies and/or oxygen excess is required, with the latter resulting in the highest conductivities. In contrast to most common oxide ion conductors, e.g. perovskite and fluorite in which oxide ion conduction proceeds via oxygen vacancies, the research on these apatite systems suggests that the conductivity involves interstitial oxide ions. With further optimization of these materials, particularly in terms of the Ge‐containing systems, significant improvements in conductivity are likely, leading to the very real possibility of the application of apatite‐type electrolytes in fuel cell and other applications. © 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 4: 373–384; 2004: Published online in Wiley InterScience (www.interscience.wiley.com) DOI 10.1002/tcr.20028

Từ khóa


Tài liệu tham khảo

10.1007/BF01637269

10.1016/0167-2738(90)90157-M

10.1149/1.1456915

Fisher C. A. J., 1996, Brit Ceram Proc

10.1149/1.1393358

10.1016/S0167-2738(00)00386-6

10.1111/j.1151-2916.1998.tb02341.x

10.1016/S0955-2219(98)00032-6

10.1146/annurev.matsci.33.022802.091651

10.1007/BF00414192

10.1016/0167-2738(95)00207-4

10.1021/cm980236q

10.1021/cm9503083

10.1016/S0167-2738(99)00319-7

10.1016/S0167-2738(00)00659-7

10.1016/S0167-2738(99)00039-9

10.1039/b003890n

10.1246/cl.1995.431

10.1016/S0955-2219(98)00215-5

10.1016/S0016-7037(00)00467-1

10.1016/S0022-3115(99)00126-9

10.1016/S0022-3115(99)00254-8

10.1111/j.1151-2916.2003.tb03455.x

10.1016/S0022-0248(99)00374-7

10.1016/j.ssi.2003.12.029

10.1016/S0022-0248(00)00577-7

10.1023/A:1006674708833

10.1023/A:1010928800227

10.1016/S0025-5408(01)00625-0

10.1016/S0167-2738(00)00835-3

10.4028/www.scientific.net/SSP.90-91.195

Slater P. R.;Sansom J. E. H.;Tolchard J.R. Proc RTST2005(submitted).

10.1016/j.ssi.2003.09.019

10.1007/BF02377766

10.1021/cm048402j

10.1039/b301179h

10.1039/b302748c

10.1039/B315257J

10.1039/b104006p

Sansom J. E. H., 2002, Proc 5th Euro SOFC Forum, 2, 627

10.1039/b401273a

10.1016/j.ssi.2003.12.014

10.1016/S0025-5408(99)00147-6

10.1016/S0025-5408(00)00227-0

10.1016/j.ssi.2004.04.013

10.1149/1.1768948

10.1016/j.materresbull.2004.02.010

Sansom J. E. H.;Sermon P. A.;Slater P. R.Solid State Ionics(in press).

Tolchard J. R.;Sansom J. E. H.;Islam M. S.;Slater P. R.Dalton Trans(submitted).

Tolchard J. R.;Islam M. S.;Slater P. R.Manuscript in preparation.

10.1016/S0167-2738(99)00252-0

10.1016/S0167-2738(99)00295-7

10.1023/A:1017914229923

10.1007/BF02377767

10.1006/jssc.2002.9724

10.1021/cm031017u

10.1021/ja0014537

Slater P. R., 2003, Proc MRS Conf Solid State Ionics‐2002, 567

10.1007/s10008-003-0492-7

10.1016/j.ssi.2004.02.023

Leon‐Reina L.;Losilla E. R.;Martinez‐Lara M.;Martin‐Sedeno M. C.;Bruque S.;Nunez P.;Sheptyakov D. V.;Aranda M. A. G.Chem Mater(in press).

10.4028/www.scientific.net/SSP.90-91.189

10.1016/j.ssi.2003.12.015

10.1016/S1293-2558(02)00030-4