Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phát triển các công cụ phân tích để đánh giá ảnh hưởng của sự tích hợp T-DNA chimeric đến sự biểu hiện gen chuyển giao trong các cây đã nhân giống bằng phương pháp sinh sản vô tính
Tóm tắt
Sự tích hợp chimeric của T-DNA và sự biểu hiện gen chuyển giao không mong đợi là những yếu tố đáng kể ảnh hưởng đến các cây chuyển gen. Nghiên cứu này nhằm điều tra kỹ lưỡng sự xuất hiện của những sự kiện này và mức độ mà chúng có thể liên quan đến nhau. Mục tiêu cuối cùng là phát triển một công cụ sàng lọc hiệu quả để chọn lựa các dòng cây chuyển gen phù hợp từ sớm. Một chiến lược dựa trên qPCR và Southern blot đã được áp dụng để đánh giá mức độ chimerism của gus và Egfp trong các giống nho Vitis vinifera cv ‘Chardonnay’ biến đổi gen. Trong số chín dòng biến đổi gen, một dòng có giá trị chimerism rất cao, điều này cho thấy có liên quan đến mức độ biểu hiện gen chuyển giao tối thiểu. Việc đánh giá gen gus theo thời gian và không gian trên một dòng được chọn làm mô hình cho thấy chimerism của gen chuyển giao là ổn định và đồng nhất trên toàn bộ mô thực vật, trong khi đó biểu hiện của nó lại rất biến thiên. Vấn đề chimerism gen chuyển giao đã được nghiên cứu chi tiết và đưa ra những gợi ý hữu ích để chọn lựa các cây chuyển gen có lợi nhất và cho việc lập kế hoạch thích hợp cho các thí nghiệm in vitro và ex vitro.
Từ khóa
#T-DNA chimeric integration #transgenic plants #gene expression #Vitis vinifera #qPCR #Southern blot #chimerismTài liệu tham khảo
Beltrán J, Jaimes H, Echeverry M et al (2009) Quantitative analysis of transgenes in cassava plants using real-time PCR technology. In Vitro Cell Dev Biol Plant 45:48–56. doi:10.1007/s11627-008-9159-5
Ben Amar A, Cobanov P, Boonrod K et al (2007) Efficient procedure for grapevine embryogenic suspension establishment and plant regeneration: role of conditioned medium for cell proliferation. Plant Cell Rep 26:1439–1447. doi:10.1007/s00299-007-0341-8
Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326. doi:10.1146/annurev.arplant.48.1.297
Bouquet A, Torregrosa L, Iocco P, Thomas MR (2006) Grapevine (Vitis vinifera L.). Methods Mol Biol 344:273–285. doi:10.1385/1-59745-131-2:273
Bubner B, Baldwin IT (2004) Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Rep 23:263–271. doi:10.1007/s00299-004-0859-y
Butaye KMJ, Cammue BPA, Delauré SL, De Bolle MFC (2005) Approaches to minimize variation of transgene expression in plants. Mol Breed 16:79–91. doi:10.1007/s11032-005-4929-9
Christou P (1990) Morphological description of transgenic soybean chimeras created by the delivery, integration and expression of foreign DNA using electric discharge particle acceleration. Ann Bot 66:379–386
Christou P, Ford TL (1995) Recovery of chimeric rice plants from dry seed using electric discharge particle acceleration. Ann Bot 75:449–454
Costa MGC, Otoni WC, Moore GA (2002) An evaluation of factors affecting the efficiency of Agrobacterium-mediated transformation of Citrus paradisi (Macf.) and production of transgenic plants containing carotenoid biosynthetic genes. Plant Cell Rep 21:365–373. doi:10.1007/s00299-002-0533-1
Dalla Costa L, Vaccari I, Mandolini M, Martinelli L (2009) Elaboration of a reliable strategy based on real-time PCR to characterize genetically modified plantlets and to evaluate the efficiency of a marker gene removal in grape (Vitis spp.). J Agric Food Chem 57:2668–2677. doi:10.1021/jf802740m
Dhekney SA, Li ZT, Zimmerman TW, Gray DJ (2009) Factors influencing genetic transformation and plant regeneration of Vitis. Am J Enol Vitic 60:285–292
Domínguez A, Cervera M, Pérez RM et al (2004) Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Mol Breed 14:171–183. doi:10.1023/B:MOLB.0000038005.73265.61
Dong J, Mchughen A (1993) Transgenic flax plants from Agrobacterium mediated transformation: incidence of chimeric regenerants and inheritance of transgenic plants. Plant Sci 91:139–148
Down RE, Ford L, Bedford SJ et al (2001) Influence of plant development and environment on transgene expression in potato and consequences for insect resistance. Transgenic Res 10:223–236
Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus (Madison) 12:13–15
Dutt M, Li ZT, Dhekney SA, Gray DJ (2008) A co-transformation system to produce transgenic grapevines free of marker genes. Plant Sci 175:423–430. doi:10.1016/j.plantsci.2008.06.014
European Network of GMO Laboratories Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing. http://gmo-crl.jrc.ec.europa.eu/doc/Min_Perf_Requirements_Analytical_methods.pdf. Accessed 13 April 2009
Faize M, Faize L, Burgos L (2010) Using quantitative real-time PCR to detect chimeras in transgenic tobacco and apricot and to monitor their dissociation. BMC Biotechnol. 10:53
Flachowsky H, Riedel M, Reim S, Hanke M-V (2008) Evaluation of the uniformity and stability of T-DNA integration and gene expression in transgenic apple plants. Electron J Biotechnol. doi:10.2225/vol11-issue1-fulltext-10
Fraley RT, Rogers SB, Horsch RB (1983) Use of a chimeric gene to confer antibiotic resistance to plant cells. In: Downey K (ed) Advances in gene technology: molecular genetics of plants and animals, Miami winter symposia, vol 20. Academic Press, New York, pp 211–221
Framond AJ, Bevan MW, Barton KA, Flavell F, Chilton MD (1983) Mini-Ti plasmid and a chimeric gene construct: new approaches to plant gene vector construction. In: Downey K (ed) Advances in gene technology: molecular genetics of plants and animals, Miami winter symposia, vol 20. Academic Press, New York, pp 159–170
Franks T, Gang He D, Thomas M (1998) Regeneration of transgenic shape Vitis vinifera L. Sultana plants: genotypic and phenotypic analysis. Mol Breed 4:321–333
Gadaleta A, Giancaspro A, Cardone MF, Blanco A (2011) Real-time PCR for the detection of precise transgene copy number in durum wheat. Cell Mol Biol Lett 16:652–668. doi:10.2478/s11658-011-0029-5
Gatto P, Vrhovsek U, Muth J et al (2008) Ripening and genotype control stilbene accumulation in healthy grapes. J Agric Food Chem 56:11773–11785. doi:10.1021/jf8017707
Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37. doi:10.1128/MMBR.67.1.16-37.2003
Hobbs SL, Kpodar P, DeLong CM (1990) The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15:851–864
Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene-transfer to plants. Transgenic Res 2:208–218. doi:10.1007/bf01977351
Jaillon O, Aury J-M, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467. doi:10.1038/nature06148
Jayasankar S, Gray DJ, Litz RE (1999) High-efficiency somatic embryogenesis and plant regeneration from suspension cultures of grapevine. Plant Cell Rep 18:533–537. doi:10.1007/s002990050617
Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195. doi:10.1016/S1360-1385(02)02251-3
Koprek T, Rangel S, McElroy D et al (2001) Transposon-mediated single-copy gene delivery leads to increased transgene expression stability in barley. Plant Physiol 125:1354–1362. doi:10.1104/pp.125.3.1354
Li B, Xie C, Qiu H (2009) Production of selectable marker-free transgenic tobacco plants using a non-selection approach: chimerism or escape, transgene inheritance, and efficiency. Plant Cell Rep 28:373–386. doi:10.1007/s00299-008-0640-8
Malnoy M, Reynoird JP, Borejsza-Wysocka EE, Aldwinckle HS (2006) Activation of the pathogen-inducible Gst1 promoter of potato after elicitation by Venturia inaequalis and Erwinia amylovora in transgenic apple (Malus × domestica). Transgenic Res 15:83–93. doi:10.1007/s11248-005-2943-7
Malnoy M, Boresjza-Wysocka EE, Norelli JL et al (2010) Genetic transformation of apple (Malus × domestica) without use of a selectable marker gene. Tree Genet Genomes 6:423–433. doi:10.1007/s11295-009-0260-7
Mason G, Provero P, Vaira AM, Accotto GP (2002) Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotechnol 2:20. doi:10.1186/1472-6750-2-20
Mathews H, Dewey V, Wagoner W, Bestwick RK (1998) Molecular and cellular evidence of chimaeric tissues in primary transgenics and elimination of chimaerism through improved selection protocols. Transgenic Res 7:123–129
Matzke AJ, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142–148
McCown BH, Lloyd G (1981) Woody plant medium (WPM)—a mineral nutrient formulation for microculture of woody plant-species. Hortic Sci 16:453
Mordhorst AP, Toonen MAJ, de Vries SC, Meinke D (1997) Plant embryogenesis. CRC Crit Rev Plant Sci 16:535–576
Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163(80):85–87. doi:10.1126/science.163.3862.85
Park SH, Rose SC, Zapata C, et al (1998) Cross-protection and selectable marker genes in plant transformation. In Vitro Cell Dev Biol-Plant 34:117–121
Pröls F, Meyer P (1992) The methylation patterns of chromosomal integration regions influence gene activity of transferred DNA in Petunia hybrida. Plant J 2:465–475. doi:10.1046/j.1365-313X.1992.t01-20-00999.x
Rakosy-Tican E, Aurori CM, Dijkstra C et al (2007) The usefulness of the gfp reporter gene for monitoring Agrobacterium-mediated transformation of potato dihaploid and tetraploid genotypes. Plant Cell Rep 26:661–671. doi:10.1007/s00299-006-0273-8
Reid KE, Olsson N, Schlosser J et al (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27. doi:10.1186/1471-2229-6-27
Sambrook J, Russel DW (2001) Molecular cloning-A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
Schell J, van Montagu M, Holsters M, Zambryski P, Joos H, Inze D et al (1983) Ti plasmids as experimental gene vectors for plants. In: Downey K (ed) Advances in gene technology: molecular genetics of plants and animals, Miami winter symposia, vol 20. Academic Press, New York, pp 191–209
Schmülling T, Schell J (1993) Transgenic tobacco plants regenerated from leaf disks can be periclinal chimeras. Plant Mol Biol 21:705–708. doi:10.1007/BF00014554
Shou H, Frame BR, Whitham SA, Wang K (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breed 13:201–208. doi:10.1023/B:MOLB.0000018767.64586.53
Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. University Press, Ames
Stam M, Belele C, Ramakrishna W et al (2002) The regulatory regions required for B’ paramutation and expression are located far upstream of the maize b1 transcribed sequences. Genetics 162:917–930
Striem MJ, Reisch BL, Kikkert JR (2000) Differences in GUS expression among grapevine transformants. Acta Hortic 526:437–444
Takano M, Egawa H, Ikeda JE, Wakasa K (1997) The structures of integration sites in transgenic rice. Plant J 11:353–361
Van Leeuwen W, Ruttink T, Borst-Vrenssen AW et al (2001) Characterization of position-induced spatial and temporal regulation of transgene promoter activity in plants. J Exp Bot 52:949–959
Velasco R, Zharkikh A, Troggio M et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326. doi:10.1371/journal.pone.0001326
Vidal JR, Gomez C, Cutanda MC et al (2010) Use of gene transfer technology for functional studies in grapevine. Aust J Grape Wine Res 16:138–151. doi:10.1111/j.1755-0238.2009.00086.x
Wen L, Tan B, Guo WW (2012) Estimating transgene copy number in precocious trifoliate orange by TaqMan real-time PCR. Plant Cell, Tissue Organ Cult 109:363–373
Zhu X-Y, Zhao M, Ma S et al (2007) Induction and origin of adventitious shoots from chimeras of Brassica juncea and Brassica oleracea. Plant Cell Rep 26:1727–1732. doi:10.1007/s11240-010-9686-8