Development of an innovative process for post-combustion CO2 capture to produce high-value NaHCO3 nanomaterials
Tài liệu tham khảo
Aboudheir, 2006, Rigorous model for predicting the behavior of CO2 absorption into AMP in packed-bed absorption columns, Indust. Engin. Chem. Res., 45, 2553, 10.1021/ie050570d
2020
2020
2020
2020
2020
2021
Álvarez, 2003, Surface tension of aqueous binary mixtures of 1-amino-2-propanol and 3-amino-1-propanol, and aqueous ternary mixtures of these amines with diethanolamine, triethanolamine, and 2-amino-2-methyl-1-propanol from (298.15 to 323.15) K, J. Chem. Eng. Data, 48, 32, 10.1021/je020048n
Anderson, 2013, Developments in the CO2CRC UNOMK 3 process: a multi-component solvent process for large scale CO2 capture, Energy Proc., 37, 225, 10.1016/j.egypro.2013.05.106
Anderson, 2014, Recent developments in the UNOMK 3 process–A low cost, environmentally benign precipitating process for CO2 capture, Energy Proc., 63, 1773, 10.1016/j.egypro.2014.11.184
Arcis, 2007, Enthalpy of solution of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol, J. Chem. Thermodyn., 39, 878, 10.1016/j.jct.2006.11.011
Aresta, 2013
Aroonwilas, 1997, High-efficiency structured packing for CO2 separation using 2-amino-2-methyl-1-propanol (AMP), Sep. Purif. Technol., 12, 67, 10.1016/S1383-5866(97)00037-3
2008
Austgen, 1989, Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation, Ind. Eng. Chem. Res., 28, 1060, 10.1021/ie00091a028
Bennion, 1997, 84
Benson, 1954, CO2 absorption: employing hot potassium carbonate solutions, Chem. Eng. Prog., 50
Billet, 1999, Prediction of mass transfer columns with dumped and arranged packings: updated summary of the calculation method of Billet and Schultes, Chem. Eng. Res. Des., 77, 498, 10.1205/026387699526520
Bonfim-Rocha, 2020, Production of Sodium Bicarbonate from CO2 Reuse Processes: a Brief Review, Int. J. Chem. Reactor Eng., 18
Böttinger, 2008, Online NMR spectroscopic study of species distribution in MEA–H2O–CO2 and DEA–H2O–CO2, Fluid Phase Equilib., 263, 131, 10.1016/j.fluid.2007.09.017
Budzianowski, 2011, Mitigating NH3 vaporization from an aqueous ammonia process for CO2 capture, Int. J. Chem. Reactor Eng., 9
Chakma, 1995, Comparison of chemical solvents for mitigating CO2 emissions from coal-fired power plants, Heat Recovery Syst. CHP, 15, 231, 10.1016/0890-4332(95)90030-6
Chakraborty, 1986, CO2 absorption in aqueous solutions of hindered amines, Chem. Eng. Sci., 41, 997, 10.1016/0009-2509(86)87185-8
Chen, 2001, Heat Capacity of Aqueous Mixtures of Monoethanolamine with 2-Amino-2-methyl-l-propanol, J. Chem. Eng. Data, 46, 102, 10.1021/je000146d
Dai, 2019, Thin-film-composite hollow fiber membranes containing amino acid salts as mobile carriers for CO2 separation, J Memb Sci., 578, 61, 10.1016/j.memsci.2019.02.023
Danckwerts, 1979, The reaction of CO2 with ethanolamines, Chem. Eng. Sci., 34, 443, 10.1016/0009-2509(79)85087-3
Darde, 2009, Chilled ammonia process for CO2 capture, Energy Proc., 1, 1035, 10.1016/j.egypro.2009.01.137
Domino, 2017
2010, 1
2018
Ferdowsi, 2018, Prediction of H2S and CO2 Solubility in Aqueous MDEA and MDEA/PZ solutions using ELECNRTL and ACID GAS Packages, J. Gas Tech.
Godini, 2008, Selectivity study of H2S and CO2 absorption from gaseous mixtures by MEA in packed beds, Chem. Eng. Res. Des., 86, 401, 10.1016/j.cherd.2007.11.012
Goharrizi, 2012, Estimation of sodium bicarbonate crystal size distributions in a steady-state bubble column reactor, Res. Chem. Intermed., 38, 1389, 10.1007/s11164-011-0470-0
Granite, 2002, Photochemical removal of mercury from flue gas, Ind. Eng. Chem. Res., 41, 5470, 10.1021/ie020251b
Hadri, 2017, Aqueous amine solution characterization for post-combustion CO2 capture process, Appl. Energy, 185, 1433, 10.1016/j.apenergy.2016.03.043
Harris, 2009, Solubilities of carbon dioxide and densities of aqueous sodium glycinate solutions before and after CO2 absorption, J. Chem. Eng. Data, 54, 144, 10.1021/je800672r
Henni, 2003, Volumetric properties and viscosities for aqueous AMP solutions from 25 °C to 70 °C, J. Chem. Eng. Data, 48, 551, 10.1021/je0201119
Hoffman, 2010
Hong, 2014, Life cycle assessment of caustic soda production: a case study in China, J. Clean. Prod., 66, 113, 10.1016/j.jclepro.2013.10.009
2021
2021
2019
Iqbal, 2011, Role of different ingredients of tooth pastes and mouthwashes in oral health, Jpda., 20, 163
Jiang, 2020, Advancement of ammonia-based post-combustion CO2 capture technology: process modifications, Fuel Process. Technol., 210, 10.1016/j.fuproc.2020.106544
Kim, 2013, Comparison of carbon dioxide absorption in aqueous MEA, DEA, TEA, and AMP solutions, Bull. Korean Chem. Soc., 34, 783, 10.5012/bkcs.2013.34.3.783
Ko, 2001, Diffusivity of nitrous oxide in aqueous alkanolamine solutions, J. Chem. Eng. Data, 46, 160, 10.1021/je000138x
Kumar, 2021, Caustic Soda Production, Energy Efficiency, and Electrolyzers, ACS Energy Letters, 6, 3563, 10.1021/acsenergylett.1c01827
Law, 2018, Optimization and economic analysis of amine-based acid gas capture unit using monoethanolamine/methyl diethanolamine, Clean Technol. Environ. Policy, 20, 451, 10.1007/s10098-017-1430-1
Lee, 2016, Understanding the vapour–liquid equilibrium of CO2 in mixed solutions of potassium carbonate and potassium glycinate, Int. J. Greenhouse Gas Control, 47, 303, 10.1016/j.ijggc.2016.02.005
Lee, 2005, Physical properties of aqueous sodium glycinate solution as an absorbent for carbon dioxide removal, J. Chem. Eng. Data, 50, 1773, 10.1021/je050210x
Lee, 2007, Kinetics of CO2 absorption in aqueous sodium glycinate solutions, Indust. Engin. Chem. Res., 46, 1578, 10.1021/ie061270e
Lee, 2006, Physical solubility and diffusivity of N2O and CO2 in aqueous sodium glycinate solutions, J. Chem. Engin. Data, 51, 504, 10.1021/je0503913
Lee, 2008, Simulation of CO2 removal with aqueous sodium glycinate solutions in a pilot plant, Korean J. Chem. Eng., 25, 1, 10.1007/s11814-008-0001-x
Leva, 1992, Reconsider packed-tower pressure-drop correlations, Chem. Eng. Prog., 88, 65
Li, 2020, Amino acids react with carbon dioxide (CO2) and form nanofibers and nanoflowers, US Patents
Li, 2016, Systematic study of aqueous monoethanolamine-based CO2 capture process: model development and process improvement, Energy Sci. Engin., 4, 23, 10.1002/ese3.101
Liu, 2009, Absorption of carbon dioxide in aqueous ammonia, Energy Proc., 1, 933, 10.1016/j.egypro.2009.01.124
Lu, 2007, Optimum design of reverse osmosis system under different feed concentration and product specification, J. Memb. Sci., 287, 219, 10.1016/j.memsci.2006.10.037
Malik, 2006, Virucidal efficacy of sodium bicarbonate on a food contact surface against feline calicivirus, a norovirus surrogate, Int. J. Food Microbiol., 109, 160, 10.1016/j.ijfoodmicro.2005.08.033
Mandal, 2005, Physical solubility and diffusivity of N2O and CO2 into aqueous solutions of (2-amino-2-methyl-1-propanol+ monoethanolamine) and (N-methyldiethanolamine+ monoethanolamine), J. Chem. Eng. Data, 50, 352, 10.1021/je049826x
Mazdiyasni, 2015, Substantial increase in concurrent droughts and heatwaves in the United States, Proc. Natl. Acad. Sci., 112, 11484, 10.1073/pnas.1422945112
Mazinani, 2011, Solubility (at low partial pressures), density, viscosity, and corrosion rate of carbon dioxide in blend solutions of monoethanolamine (MEA) and sodium glycinate (SG), J. Chem. Engin. Data, 56, 3163, 10.1021/je2002418
2022
Mona, 2011, Influence of potassium sulfate on faba bean yield and quality, Aust. J. Basic Appl. Sci., 5, 87
Nakagaki, 2019, Updated e-NRTL model for high-concentration MEA aqueous solution by regressing thermodynamic experimental data at high temperatures, Int. J. Greenhouse Gas Control, 82, 117, 10.1016/j.ijggc.2018.12.022
Oexmann, 2012, Post-combustion CO2 capture: chemical absorption processes in coal-fired steam power plants, Greenhouse Gases: Sci. Tech., 2, 80, 10.1002/ghg.1273
Park, 2008, Absorption of carbon dioxide into aqueous solution of sodium glycinate, Separation Sci.Tech., 43, 3003, 10.1080/01496390802219620
Peng, 2012, Advance in post-combustion CO2 capture with alkaline solution: a brief review, Energy Proc., 14, 1515, 10.1016/j.egypro.2011.12.1126
Pinsent, 1956, The kinetics of combination of carbon dioxide with hydroxide ions, Trans. Faraday Soc., 52, 1512, 10.1039/tf9565201512
Ramezani, 2020, State-of-the-art of CO2 capture with amino acid salt solutions, Rev. Chem. Eng.
Rangwala, 1992, Absorption of CO2 into aqueous tertiary amine/MEA solutions, Can. J. Chem. Eng., 70, 482, 10.1002/cjce.5450700310
Ritchie, H., Roser, M., 2020. CO₂ and greenhouse gas emissions. Our world in data.
Rubin, 2007, Cost and performance of fossil fuel power plants with CO2 capture and storage, Energy Pol., 35, 4444, 10.1016/j.enpol.2007.03.009
Ruiz, 2020, Sustainable and negative carbon footprint solid-based NaOH technology for CO2 capture, ACS Sustain. Chem. Eng., 8, 19003, 10.1021/acssuschemeng.0c07093
Saha, 1993, Solubility and diffusivity of nitrous oxide and carbon dioxide in aqueous solutions of 2-amino-2-methyl-1-propanol, J. Chem. Eng. Data, 38, 78, 10.1021/je00009a019
Saha, 1995, Kinetics of absorption of CO2 into aqueous solutions of 2-amino-2-methyl-1-propanol, Chem. Eng. Sci., 50, 3587, 10.1016/0009-2509(95)00187-A
Saha, 1995, Kinetics of absorption of CO2 into aqueous solutions of 2-amino-2-methyl-1-propanol, Chem. Eng. Sci., 50, 3587, 10.1016/0009-2509(95)00187-A
Salazar, 2009, Enthalpies of absorption of carbon dioxide in aqueous sodium glycinate solutions at temperatures of (313.15 and 323.15) K, J. Chem. Engin. Data, 55, 1215, 10.1021/je9005954
Sander, 2015, Compilation of Henry’s law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399, 10.5194/acp-15-4399-2015
Sanz-Pérez, 2016, Direct capture of CO2 from ambient air, Chem. Rev., 116, 11840, 10.1021/acs.chemrev.6b00173
Savage, 1980, Chemical absorption and desorption of carbon dioxide from hot carbonate solutions, Chem. Eng. Sci., 35, 1513, 10.1016/0009-2509(80)80045-5
Smith, 2014, Demonstration of a concentrated potassium carbonate process for CO2 capture, Energy Fuels, 28, 299, 10.1021/ef4014746
Song, 2006, Solubilities of carbon dioxide in aqueous solutions of sodium glycinate, Fluid Phase Equilib., 246, 1, 10.1016/j.fluid.2006.05.012
Song, 2008, Simplified estimation of regeneration energy of 30 wt% sodium glycinate solution for carbon dioxide absorption, Indust. Engin. Chem. Res., 47, 9925, 10.1021/ie8007117
ThermoData Engine, NIST. https://trc.nist.gov/tde.html.
Thiel, 2017, Utilization of desalination brine for sodium hydroxide production: technologies, engineering principles, recovery limits, and future directions, ACS Sustain. Chem. Eng., 5, 11147, 10.1021/acssuschemeng.7b02276
Tucker, 1992, Sodium bicarbonate or multielement buffer via diet or rumen: effects on performance and acid-base status of lactating cows, J. Dairy Sci., 75, 2409, 10.3168/jds.S0022-0302(92)78002-3
1998, 20
2015, Report of the conference of the parties on its twenty-first session, held in Paris from 30 November to 13 December 2015 addendum contents part two: action taken by the conference of the parties at its twenty-first session, Decision 1/CP. 21 Adoption of the Paris Agreement
Vaidya, 2010, Kinetics of carbon dioxide removal by aqueous alkaline amino acid salts, Ind. Eng. Chem. Res., 49, 11067, 10.1021/ie100224f
Van Vuuren, 2018, Alternative pathways to the 1.5 C target reduce the need for negative emission technologies, Nat. Clim. Chang., 8, 391, 10.1038/s41558-018-0119-8
Vázquez, 1997, Surface tension of binary mixtures of water+ monoethanolamine and water+ 2-amino-2-methyl-1-propanol and tertiary mixtures of these amines with water from 25 °C to 50 °C, J. Chem. Eng. Data, 42, 57, 10.1021/je960238w
Versteeg, 1996, On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions. An overview, Chem. Eng. Commun., 144, 113, 10.1080/00986449608936450
Versteeg, 1988, Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions, J. Chem. Eng. Data, 33, 29, 10.1021/je00051a011
Wang, 2019, Modelling of CO2 absorption from gas mixtures using chemcial absorbents in adiabatic packed-beds
Wang, 2010, Mercury emission and speciation of coal-fired power plants in China, Atmosph. Chem. Phys., 10, 1183, 10.5194/acp-10-1183-2010
Wang, 2016, Phase change amino acid salt separates into CO2-rich and CO2-lean phases upon interacting with CO2, Appl. Energy, 161, 41, 10.1016/j.apenergy.2015.09.094
Wang, 2021, Sodium bicarbonate, an inorganic salt and a potential active agent for cancer therapy, Chin. Chem. Lett., 10.1016/j.cclet.2021.06.032
Warsinger, 2016, Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination, Water Res., 106, 272, 10.1016/j.watres.2016.09.029
Weiland, R.H., Hatcher, N.A., Nava, J.L., 2010. Post-combustion CO2 capture with amino-acid salts, Paper presented at GPA Europe Meeting, p. 24.
Xu, 1991, Physical properties of aqueous AMP solutions, J. Chem. Eng. Data, 36, 71, 10.1021/je00001a021
Zandalinas, 2021, Global warming, climate change, and environmental pollution: recipe for a multifactorial stress combination disaster, Trends Plant Sci., 10.1016/j.tplants.2021.02.011
Zhang, 2012, Carbon capture with ionic liquids: overview and progress, Energy Environ. Sci., 5, 6668, 10.1039/c2ee21152a
Zhang, 2011, Thermodynamic modeling for CO2 absorption in aqueous MDEA solution with electrolyte NRTL model, Ind. Eng. Chem. Res., 50, 163, 10.1021/ie1006855
Zhao, 2008, pH-controlled drug loading and release from biodegradable microcapsules, Nanomed. Nanotechnol. Biol. Med., 4, 302, 10.1016/j.nano.2008.06.004
Zhao, 2008, Experimental study on CO2 absorption and regeneration of aqueous sodium glycinate solutions, J. Chem. Engin. Chinese Universities, 22, 690
Ziemer, 2006, J. Chem. Thermodyn., 38, 467, 10.1016/j.jct.2005.06.017