Development of an automated high-temperature valveless injection system for online gas chromatography

Atmospheric Measurement Techniques - Tập 7 Số 12 - Trang 4431-4444
Nathan M. Kreisberg1, David R. Worton1,2, Yunliang Zhao2,3, Gabriel Isaacman‐VanWertz2, A. H. Goldstein4,2, Susanne V. Hering1
1Aerosol Dynamics Inc., Berkeley, CA, USA
2Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
3now at: Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
4Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA

Tóm tắt

Abstract. A reliable method of sample introduction is presented for online gas chromatography with a special application to in situ field portable atmospheric sampling instruments. A traditional multi-port valve is replaced with a valveless sample introduction interface that offers the advantage of long-term reliability and stable sample transfer efficiency. An engineering design model is presented and tested that allows customizing this pressure-switching-based device for other applications. Flow model accuracy is within measurement accuracy (1%) when parameters are tuned for an ambient-pressure detector and 15% accurate when applied to a vacuum-based detector. Laboratory comparisons made between the two methods of sample introduction using a thermal desorption aerosol gas chromatograph (TAG) show that the new interface has approximately 3 times greater reproducibility maintained over the equivalent of a week of continuous sampling. Field performance results for two versions of the valveless interface used in the in situ instrument demonstrate typically less than 2% week−1 response trending and a zero failure rate during field deployments ranging up to 4 weeks of continuous sampling. Extension of the valveless interface to dual collection cells is presented with less than 3% cell-to-cell carryover.

Từ khóa


Tài liệu tham khảo

Blumberg, L. M.: Temperature-Programmed Gas Chromatography, Wiley-VCH, Weinheim, Germany, 2010.

Davankov, V. A., Onuchak, L. A., Kudryashov, S. Y., and Arutyunov, Y. I.: Averaging the pressure and flow rate of the carrier gas in a gas chromatographic column, Chromatographia, 49, 449–453, 1999.

Deans, D. R.: Sample injection in gas chromatography, in: Patent, Google Patents, 1972.

Deans, D. R.: Gas flow switching method and apparatus, in: Patent, Google Patents, 1973.

Deans, D. R.: A new gas sampling device for gas chromatography, J. Chromatogr. A, 289, 43–51, 1984a.

Deans, D. R.: Sample injection, in: Patent, Google Patents, 1984b.

Giddings, J. C.: Role of Column Pressure Drop in Gas Chromatographic Resolution, Anal. Chem., 36, 741–744, 1964.

Goldstein, A. H. and Galbally, I. E.: Known and unexplored organic constituents in the earth's atmosphere, Environ. Sci. Technol., 41, 1514–1521, 2007.

Hamilton, J. F., Webb, P. J., Lewis, A. C., Hopkins, J. R., Smith, S., and Davy, P.: Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS, Atmos. Chem. Phys., 4, 1279–1290, https://doi.org/10.5194/acp-4-1279-2004, 2004.

James, A. T. and Martin, A. J. P.: Gas-liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid, Biochemical J., 50, 679–690, 1952.

Isaacman, G., Kreisberg, N. M., Worton, D. R., Hering, S. V., and Goldstein, A. H.: A versatile and reproducible automatic injection system for liquid standard introduction: application to in-situ calibration, Atmos. Meas. Tech., 4, 1937–1942, https://doi.org/10.5194/amt-4-1937-2011, 2011.

Isaacman, G., Kreisberg, N. M., Yee, L. D., Worton, D. R., Chan, A. W. H., Moss, J. A., Hering, S. V., and Goldstein, A. H.: Online derivatization for hourly measurements of gas- and particle-phase semi-volatile oxygenated organic compounds by thermal desorption aerosol gas chromatography (SV-TAG), Atmos. Meas. Tech., 7, 4417–4429, https://doi.org/10.5194/amt-7-4417-2014, 2014.

Kreisberg, N. M., Hering, S. V., Williams, B. J., Worton, D. R., and Goldstein, A. H.: Quantification of Hourly Speciated Organic Compounds in Atmospheric Aerosols, Measured by an In-Situ Thermal Desorption Aerosol Gas Chromatograph (TAG), Aerosol Sci. Technol., 43, 38–52, 2009.

Kroll, J. H. and Seinfeld, J. H.: Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere, Atmos. Environ., 42, 3593–3624, https://doi.org/10.1016/j.atmosenv.2008.01.003, 2008.

Lambe, A. T., Logue, J. M., Kreisberg, N. M., Hering, S. V., Worton, D. R., Goldstein, A. H., Donahue, N. M., and Robinson, A. L.: Apportioning black carbon to sources using highly time-resolved ambient measurements of organic molecular markers in Pittsburgh, Atmos. Environ., 43, 3941–3950, 2009.

Lewis, A. C., Carslaw, N., Marriott, P. J., Kinghorn, R. M., Morrison, P., Lee, A. L., Bartle, K. D., and Pilling, M. J.: A larger pool of ozone-forming carbon compounds in urban atmospheres, Nature, 405, 778–781, 2000.

Lide, D. R.: CRC Handbook of Chemistry and Physics: A Ready-reference Book of Chemical and Physical Data, Book, Whole, CRC Press, 1991.

McNair, H. M. and Miller, J. M.: Basic gas chromatography, John Wiley & Sons, 2011.

Ras, M. R., Borrull, F., and Marcé, R. M.: Sampling and preconcentration techniques for determination of volatile organic compounds in air samples, TrAC-Trend. Anal. Chem., 28, 347–361, 2009.

Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking organic aerosols: Semivolatile emissions and photochemical aging, Science, 315, 1259–1262, 2007.

Williams, B. J., Goldstein, A. H., Kreisberg, N. M., and Hering, S. V.: An in-situ instrument for speciated organic composition of atmospheric aerosols: Thermal Desorption Aerosol GC/MS-FID (TAG), Aerosol Sci. Technol., 40, 627–638, 2006.

Williams, B. J., Jayne, J. T., Lambe, A. T., Hohaus, T., Kimmel, J. R., Sueper, D., Brooks, W., Williams, L. R., Trimborn, A. M., and Martinez, R. E.: The First Combined Thermal Desorption Aerosol Gas Chromatograph-Aerosol Mass Spectrometer (TAG-AMS), Aerosol Sci. Technol., 48, 358–370, 2014.

Worton, D. R., Kreisberg, N. M., Isaacman, G., Teng, A. P., McNeish, C., Górecki, T., Hering, S. V., and Goldstein, A. H.: Thermal Desorption Comprehensive Two-Dimensional Gas Chromatography: An Improved Instrument for In-Situ Speciated Measurements of Organic Aerosols, Aerosol Sci. Technol., 46, 380–393, 2012.

Zhao, Y., Kreisberg, N. M., Worton, D. R., Teng, A. P., Hering, S. V., and Goldstein, A. H.: Development of an In Situ Thermal Desorption Gas Chromatography Instrument for Quantifying Atmospheric Semi-Volatile Organic Compounds, Aerosol Sci. Technol., 47, 258–266, 2013a.

Zhao, Y., Kreisberg, N. M., Worton, D. R., Isaacman, G., Weber, R. J., Liu, S., Day, D. A., Russell, L. M., Markovic, M. Z., and VandenBoer, T. C.: Insights into secondary organic aerosol formation mechanisms from measured gas/particle partitioning of specific organic tracer compounds, Environ. Sci. Technol., 47, 3781–3787, 2013b.