Development of an animal-borne “sonar tag” for quantifying prey availability: test deployments on northern elephant seals

Animal Biotelemetry - Tập 3 - Trang 1-16 - 2015
Gareth L. Lawson1, Luis A. Hückstädt2, Andone C. Lavery1, Frédéric M. Jaffré1, Peter H. Wiebe1, Jonathan R. Fincke1, Daniel E. Crocker3, Daniel P. Costa2
1Woods Hole Oceanographic Institution; Woods Hole USA
2Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, USA
3Department of Biology, Sonoma State University, Rohnert Park, USA

Tóm tắt

Developments in electronic tagging technologies have provided unprecedented insight into the movements and behavior of marine predators. Concurrent information on the prey of these tracked animals, however, is mostly lacking. We developed and tested a prototype autonomous echosounder (aka the sonar tag) for deployment on large marine animals intended to provide quantification of their prey fields. The resulting fully autonomous, internally recording prototype sonar tag operated at a power of 1 W and a frequency of 200 kHz. A series of test deployments were successfully conducted on four juvenile female elephant seals (Mirounga angustirostris) captured at the Año Nuevo State Reserve, California, and released short distances away. Translocated seals were instrumented with a sonar tag and a Fastloc GPS tag with an integrated time-depth recorder (TDR). All four animals returned to land after 3–18 days, making dives to depths of up to 778 m. Strong backscattering from the bottom was observed during many dives, indicating an often close association with the seafloor. Numerous observations of strongly scattering targets, potentially indicative of prey, were also made in the water column, often associated with particular dive and movement behaviors. During dives identified as foraging-type and also travel-type, one animal with the acoustic transducer on its head showed successive targets getting increasingly closer to the animal, possibly consistent with prey pursuit. These results demonstrate the value of active acoustic backscattering measurements made from free-ranging animals, complementing the ecological insight afforded by traditional depth- and position-logging tags. Future refinements will include further miniaturization, performance optimization, and extensions in the deployment duration.

Tài liệu tham khảo

Holland KN, Brill RW, Chang RKC. Horizontal and vertical movements of yellowfin and bigeye tuna associated with fish aggregating devices. Fish Bull. 1990;88:493–508. Lawson GL, Castleton MC, Block BA. Movements and diving behavior of Atlantic bluefin tuna (Thunnus thynnus) in relation to water column structure in the northwestern Atlantic. Mar Ecol Prog Ser. 2010;400:245–65. Simmons SE, Crocker DE, Hassrick JL, Kuhn CE, Robinson PW, Tremblay Y, et al. Climate-scale hydrographic features related to foraging success in a capital breeder, the northern elephant seal Mirounga angustirostris. Endanger Species Res. 2010;10:233–43. Peckham SH, Maldonado-Diaz D, Tremblay Y, Ochoa R, Polovina J, Balazs G, et al. Demographic implications of alternative foraging strategies in juvenile loggerhead turtles Caretta caretta of the North Pacific Ocean. Mar Ecol Prog Ser. 2011;425:269–80. Costa DP, Breed GA, Robinson PW. New insights into pelagic migrations: implications for ecology and conservation. Annu Rev Ecol Evol Syst. 2012;43:73–96. Weimerskirch H, Louzao M, de Grissac S, Delord K. Changes in wind pattern alter albatross distribution and life-history traits. Science. 2012;335:211–4. Bost CA, Cotté C, Bailleul F, Cherel Y, Charrassin JB, Guinet C, et al. The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J Mar Syst. 2009;78:363–76. Block BA, Jonsen ID, Jorgensen SJ, Winship AJ, Shaffer SA, Bograd SJ, et al. Tracking apex marine predator movements in a dynamic ocean. Nature. 2011;475:86–90. Bailleul F, Charrassin J-B, Monestiez P, Roquet F, Biuw M, Guinet C. Successful foraging zones of southern elephant seals from the Kerguelen Islands in relation to oceanographic conditions. Proc R Soc Lond B. 2007;362:2169–81. Biuw M, Boehme L, Guinet C, Hindell M, Costa D, Charrassin JB, et al. Variations in behavior and condition of a Southern Ocean top predator in relation to in situ oceanographic conditions. Proc Natl Acad Sci. 2007;104:13705–10. Teo SLH, Kudela RM, Rais A, Perle C, Costa DP, Block BA. Estimating chlorophyll profiles from electronic tags deployed on pelagic animals. Aquat Biol. 2009;5:195–207. Costa DP, Huckstadt LA, Crocker DE, McDonald BI, Goebel ME, Fedak MA. Approaches to studying climatic change and its role on the habitat selection of Antarctic Pinnipeds. Integr Comp Biol. 2010;50:1018–30. Jaud T, Dragon A-C, Garcia JV, Guinet C. Relationship between chlorophyll a concentration, light attenuation and diving depth of the southern elephant seal Mirounga leonina. PLoS ONE. 2012;7:e47444. Simmons SE, Crocker DE, Kudela RM, Costa DP. Linking foraging behaviour of the northern elephant seal with oceanography and bathymetry at mesoscales. Mar Ecol Prog Ser. 2007;346:265–75. McConnell BJ, Fedak MA. Movements of southern elephant seals. Can J Zool. 1996;74:1485–96. Dragon AC, Bar-Hen A, Monestiez P, Guinet C. Comparative analysis of methods for inferring successful foraging areas from Argos and GPS tracking data. Mar Ecol Prog Ser. 2012;452:253–67. Biuw M, McConnell BC, Bradshaw JA, Burton H, Fedak M. Blubber and buoyancy: monitoring the body condition of free-ranging seals using simple dive characteristics. J Exp Biol. 2003;206:3405–23. Bailleul F, Pinaud D, Hindell M, Charrassin JB, Guinet C. Assessment of scale-dependent foraging behaviour in southern elephant seals incorporating the vertical dimension: a development of the first passage time method. J Anim Ecol. 2008;77:948–57. Biuw M, Nost OA, Stien A, Zhou Q, Lydersen C, Kovacs KM. Effects of hydrographic variability on the spatial, seasonal and diel diving patterns of Southern elephant seals in the Eastern Weddell Sea. PLoS ONE. 2010;5:e13816. Robinson PW, Costa DP, Crocker DE, Gallo-Reynoso JP, Champagne CD, Fowler MA, et al. Foraging behavior and success of a mesopelagic predator in the northeast Pacific Ocean: insights from a data-rich species, the northern elephant seal. PLoS ONE. 2012;7:e36728. Naito Y, Costa DP, Adachi T, Robinson PW, Fowler M, Takahashi A. Unraveling the mysteries of a mesopelagic diet: a large apex predator specializes on small prey. Funct Ecol. 2013;27:710–7. Friedlaender AS, Lawson GL, Halpin PN. Evidence of resource partitioning between humpback and minke whales around the Western Antarctica Peninsula. Mar Mamm Sci. 2009;25:402–15. Friedlaender AS, Johnston DW, Fraser WR, Burns J, Halpin PN, Costa DP. Ecological niche modeling of sympatric krill predators around Marguerite Bay, Western Antarctic Peninsula. Deep-Sea Res Part II. 2011;58:1729–40. Croll DA, Tershy BR, Hewitt RP, Demer DA, Fiedler PC, Smith SE, et al. An integrated approach to the foraging ecology of marine birds and mammals. Deep-Sea Res Part II. 1998;45:1353–71. Baumgartner MF, Mate BR. Summertime foraging ecology of North Atlantic right whales. Mar Ecol Prog Ser. 2003;264:123–35. Hazen EL, Friedlaender AS, Thompson MA, Ware CR, Weinrich MT, Halpin PN, et al. Fine-scale prey aggregations and foraging ecology of humpback whales Megaptera novaeangliae. Mar Ecol Prog Ser. 2009;395:75–89. Nowacek DP, Friedlaender AS, Halpin PN, Hazen EL, Johnston DW, Read AJ, et al. Super-aggregations of krill and humpback whales in Wilhelmina Bay, Antarctic Peninsula. PLoS ONE. 2011;6:e19173. Johnson M, de Soto Aguillar N, Madsen PT. Studying the behavior and sensory ecology of marine mammals using acoustic recording tags: a review. Mar Ecol Prog Ser. 2009;395:55–73. Moll RJ, Millspaugh JJ, Beringer J, Sartwell J, Zhihai H. A new ‘view’ of ecology and conservation through animal-borne video systems. Trends Ecol Evol. 2007;22:660–8. Lawson GL, Wiebe PH, Stanton TK, Ashjian CJ. Euphausiid distribution along the Western Antarctic Peninsula—(A) development of robust multi-frequency acoustic techniques to identify euphausiid aggregations and quantify euphausiid size, abundance, and biomass. Deep-Sea Res Part II. 2008;55:412–31. Miyamoto Y, Sakai T, Furusawa M, Naito Y. Development of high-frequency micro echo sounder. Fisheries Sci. 2004;70:381–8. Oliver GW, Morris PA, Thorson PH, LeBoeuf BJ. Homing behavior of juvenile northern elephant seals. Mar Mamm Sci. 1998;14:245–56. Burgess WC, Tyack PL, Le Boeuf BJ, Costa DP. A programmable acoustic recording tag and first results from free-ranging northern elephant seals. Deep-Sea Res Part II. 1998;45:1327–51. Costa DP, Crocker DE, Webb PM, Houser DS, Blackwell SB, Waples D, et al. The effect of a low-frequency sound source (acoustic thermometry of the ocean climate) on the diving behavior of juvenile northern elephant seals, Mirounga angustirostris. J Acoust Soc Am. 2003;113:1155–65. Aoki K, Watanabe YY, Crocker DE, Robinson PW, Biuw M, Costa DP, et al. Northern elephant seals adjust gliding and stroking patterns with changes in buoyancy: validation of at-sea metrics of body density. J Exp Biol. 2011;214:2973–87. Jaffré FM, Austin TC, Terray G. Miniature, low power, generic Doppler sonar. OCEANS 2010;20–23 Sept. 2010. doi:10.1109/OCEANS.2010.5663860. Tressler JF, Corsaro RD. Properties of Corprene, revisited. J Acoust Soc Am. 2014;135:2481–4. Kastak D, Schusterman RJ. In-air and underwater hearing sensitivity of a northern elephant seal (Mirounga angustirostris). Can J Zool. 1999;77:1751–8. Horowitz P, Hill W. The art of electronics. 2nd ed. New York: Cambridge University Press; 1989. Foote KG, Knudsen HP, Vestnes G, MacLennan DN, Simmonds EJ. Calibration of acoustic instruments for fish density estimation: a practical guide. ICES Coop Res Rep. 1987;144:1–69. Lavery AC, Chu D, Moum J. Measurements of acoustic scattering from zooplankton and oceanic microstructure using a broadband echosounder. ICES J Mar Sci. 2010;67:379–94. Champagne CD, Houser DS, Costa DP, Crocker DE. The effects of handling and anesthetic agents on the stress response and carbohydrate metabolism in northern elephant seals. PLoS ONE. 2012;7:e38442. Ensminger DC, Somo DA, Houser DS, Crocker DE. Metabolic responses to adrenocorticotropic hormone (ACTH) vary with life-history stage in adult male northern elephant seals. Gen Comp Endocrin. 2014;204:150–7. LeBoeuf DJ, Naito Y, Asaga T, Crocker D, Costa DP. Swim speed in a female northern elephant seal metabolic and foraging implications. Can J Zool. 1992;70:786–94. Hindell MA, Slip DJ, Burton HR. The diving behavior of adult male and female southern elephant seals, Mirounga leonine (Pinnipedia, Phocidae). Aust J Zool. 1991;39:595–619. Hooker SK, Miller PJO, Johnson MP, Cox OP, Boyd IL. Ascent exhalations of Antarctic fur seals: a behavioural adaptation for breath-hold diving? Proc R Soc Lond B. 2005;272:355–63. Kelso EJ, Champagne CD, Tift MS, Houser DS, Crocker DE. Sex differences in fuel use and metabolism during development in fasting juvenile northern elephant seals. J Exp Biol. 2012;215:2637–45. Arranz P, de Soto NA, Madsen PT, Brito A, Bordes F, Johnson MP. Following a foraging fish-finder: diel habitat use of Blainville’s beaked whales revealed by echolocation. PLoS ONE. 2011;6:e28353. Padman L, Costa DP, Bolmer ST, Goebel ME, Huckstadt LA, Jenkins A, et al. Seals map bathymetry of the Antarctic continental shelf. Geophys Res Lett. 2010;37:L21601. Davies IE, Barham EG. The Tucker opening-closing micronekton net and its performance in a study of the deep scattering layer. Mar Biol. 1969;2:127–31. Thums M, Bradshaw CJA, Hindell MA. A validated approach for supervised dive classification in diving vertebrates. J Exp Mar Biol Ecol. 2008;363:75–83. Kuhn CE, Crocker DE, Tremblay Y, Costa DP. Time to eat: measurements of feeding behaviour in a large marine predator, the northern elephant seal Mirounga angustirostris. J Anim Ecol. 2009;78:513–23. Lidgard DC, Bowen WD, Jonsen ID, Iverson SJ. Animal-borne acoustic transceivers reveal patterns of at-sea associations in an upper-trophic level predator. PLoS ONE. 2012;7:e48962. Hayes SA, Teutschel NM, Michel CJ, Champagne C, Robinson PW, Folwer M, et al. Mobile receivers: releasing the mooring to “see” where fish go. Environ Biol Fish. 2013;96:189–201. Johnson MP, Tyack PL. A digital acoustic recording tag for measuring response of wild marine mammals to sound. J Oceanic Eng. 2003;28:3–11. Kastak D, Schusterman RJ, Southall BL, Reichmuth CJ. Underwater temporary threshold shift induced by octave-band noise in three species of pinniped. J Acoust Soc Am. 1999;106:1142–8. Kastak D, Southall B, Schusterman RJ, Reichmuth Kastak C. Underwater temporary threshold shift in pinnipeds: effects of noise level and duration. J Acoust Soc Am. 2005;118:3154–63. National Research Council. Marine mammal populations and ocean noise. Washington, DC: National Academies Press; 2005.