Development of an Extracellular Matrix Plate for Drug Screening Using Patient-Derived Tumor Organoids

BioChip Journal - Tập 17 - Trang 284-292 - 2023
Yong Hun Jung1,2, Kyungwon Park1, Minseop Kim1, Hyunjik Oh3, Dong-Hee Choi1,2, Jinchul Ahn1,2, Sat-byol Lee4,5, Kyuhwan Na2, Byung Soh Min4,5, Jin-A. Kim1, Seok Chung1,6
1School of Mechanical Engineering, Korea University, Seoul, Korea
2 R&D Research Center, Next&Bio Inc, Seoul, Korea
3Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, Korea
4Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
5Open NBI Convergence Technology Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
6KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea

Tóm tắt

With the advances in organoid culture, patient-derived organoids are utilized in diverse fields to broaden our understanding of conventional 2-dimensional (2D) culture methods and animal models. Patient-derived organoids have found new applications, such as screening for patient-matching drugs, immune checkpoint drugs, and mutation-target drugs, in the field of drug screening. However, conventional dome-shaped Matrigel drop-based screening methods using 24-, 48-, and 96-well plates are not effective for carrying out large-scale drug screening using organoids. Here, we present a newly developed 96-well plate-based method for the effective screening of patient-derived tumor organoids embedded in Matrigel. The new screening plate has a central hole with a diameter of 3 or 5 mm to provide a definite space for placing Matrigel in a cylindrical shape. Compared to the conventional dome-shaped Matrigel where the Matrigel drop is located arbitrarily, a cylinder-shaped Matrigel position in confined central wells allowed for faster and cost-effective tumor organoid screening. Importantly, the cylinder-shaped Matrigel ensures better consistency in high-throughput image-based analysis, which is used worldwide. Our results demonstrate the possibility of replacing the conventional 24-, 48-, and 96-well plates with the newly developed plates for effective tumor organoid screening.

Tài liệu tham khảo

Garreta, E., Kamm, R.D., Chuva de Sousa Lopes, S.M., Lancaster, M.A., Weiss, R., Trepat, X., Hyun, I., Montserrat, N.: Rethinking organoid technology through bioengineering. Nat. Mater. 20, 145–155 (2021) Fiorini, E., Veghini, L., Corbo, V.: Modeling cell communication in cancer with organoids: making the complex simple. Front. Cell Dev. Biol. 8, 166 (2020) Giobbe, G.G., Crowley, C., Luni, C., Campinoti, S., Khedr, M., Kretzschmar, K., de Santis, M.M., Zambaiti, E., Michielin, F., Meran, L., Hu, Q., van Son, G., Urbani, L., Manfredi, A., Giomo, M., Eaton, S., Cacchiarelli, D., Li, V.S.W., Clevers, H., Bonfanti, P., Elvassore, N., de Coppi, P.: Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat. Commun. 10, 5658 (2019) Menche, C., Farin, H.F.: Strategies for genetic manipulation of adult stem cell-derived organoids. Exp. Mol. Med. 53, 1483–1494 (2021) Urbischek, M., Rannikmae, H., Foets, T., Ravn, K., Hyvönen, M., de la Roche, M.: Organoid culture media formulated with growth factors of defined cellular activity. Sci. Rep. 9, 6193 (2019) Zachos, N.C., Kovbasnjuk, O., Foulke-Abel, J., In, J., Blutt, S.E., de Jonge, H.R., Estes, M.K., Donowitz, M.: Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. J. Biol. Chem. 291, 3759–3766 (2016) Brooks, M.J., Chen, H.Y., Kelley, R.A., Mondal, A.K., Nagashima, K., de Val, N., Li, T., Chaitankar, V., Swaroop, A.: Improved retinal organoid differentiation by modulating signaling pathways revealed by comparative transcriptome analyses with development in vivo. Stem Cell Rep. 13, 891–905 (2019) Lancaster, M.A., Renner, M., Martin, C.A., Wenzel, D., Bicknell, L.S., Hurles, M.E., Homfray, T., Penninger, J.M., Jackson, A.P., Knoblich, J.A.: Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013) Schutgens, F., Rookmaaker, M.B., Margaritis, T., Rios, A., Ammerlaan, C., Jansen, J., Gijzen, L., Vormann, M., Vonk, A., Viveen, M., Yengej, F.Y., Derakhshan, S., de Winter-de Groot, K.M., Artegiani, B., van Boxtel, R., Cuppen, E., Hendrickx, A.P.A., van den Heuvel-Eibrink, M.M., Heitzer, E., Lanz, H., Beekman, J., Murk, J.L., Masereeuw, R., Holstege, F., Drost, J., Verhaar, M.C., Clevers, H.: Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat. Biotechnol. 37, 303–313 (2019) Hofer, M., Lutolf, M.P.: Engineering organoids. Nat. Rev. Mater. 6, 402–420 (2021) Du, Y., Li, X., Niu, Q., Mo, X., Qui, M., Ma, T., Kuo, C.J., Fu, H.: Development of a miniaturized 3D organoid culture platform for ultra-high-throughput screening. J. Mol. Cell Biol. 12(8), 630–643 (2020) Lee, S., Chang, J., Kang, S.M., Parigoris, E., Lee, J.H., Huh, Y.S., Takayama, S.: High-throughput formation and image-based analysis of basal-in mammary organoids in 384-well plates. Sci. Rep. 12, 317 (2022) Broutier, L., Mastrogiovanni, G., Verstegen, M.M.A., Francies, H.E., Gavarró, L.M., Bradshaw, C.R., Allen, G.E., Arnes-Benito, R., Sidorova, O., Gaspersz, M.P., Georgakopoulos, N., Koo, B.K., Dietmann, S., Davies, S.E., Praseedom, R.K., Lieshout, R., IJzermans, J. N. M., Wigmore, S. J., Saeb-Parsy, K., Garnett, M. J., van der Laan, L. J. W. & Huch, M.: Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med. 23, 1424–1435 (2017) Li, Z., Qian, Y., Li, W., Liu, L., Yu, L., Liu, X., Wu, G., Wang, Y., Luo, W., Fang, F., Liu, Y., Song, F., Cai, Z., Chen, W., Huang, W.: Human lung adenocarcinoma-derived organoid models for drug screening. iScience 23, 101411 (2020) Sato, T., Vries, R.G., Snippert, H.J., van de Wetering, M., Barker, N., Stange, D.E., van Es, J.H., Abo, A., Kujala, P., Peters, P.J., Clevers, H.: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009) Sato, T., Stange, D.E., Ferrante, M., Vries, R.G.J., van Es, J.H., van den Brink, S., van Houdt, W.J., Pronk, A., van Gorp, J., Siersema, P.D., Clevers, H.: Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011) Kassis, T., Hernandez-Gordillo, V., Langer, R., Griffith, L.G.: OrgaQuant: human intestinal organoid localization and quantification using deep convolutional neural networks. Sci. Rep. 9, 1–7 (2019) Fujii, M., Sato, T.: Somatic cell-derived organoids as prototypes of human epithelial tissues and diseases. Nat. Mater. 20, 156–169 (2021) Lukonin, I., Zinner, M., Liberali, P.: Organoids in image-based phenotypic chemical screens. Exp. Mol. Med. 53, 1495–1502 (2021) Brandenberg, N., Hoehnel, S., Kuttler, F., Homicsko, K., Ceroni, C., Ringel, T., Gjorevski, N., Schwank, G., Coukos, G., Turcatti, G., Lutolf, M.P.: High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays. Nat. Biomed. Eng. 4, 863–874 (2020) Shin, W., Wu, A., Min, S., Shin, Y.C., Fleming, R.Y.D., Eckhardt, S.G., Kim, H.J.: Spatiotemporal gradient and instability of Wnt induce heterogeneous growth and differentiation of human intestinal organoids. iScience 23, 101372 (2020) Kim, J., Koo, B.K., Knoblich, J.A.: Human organoids: Model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020) Mampallil, D., Eral, H.B.: A review on suppression and utilization of the coffee-ring effect. Adv. Colloid Interface Sci. 252, 38–54 (2018) Zaman, M.H., Trapani, L.M., Sieminski, A.L., MacKellar, D., Gong, H., Kamm, R.D., Wells, A., Lauffenburger, D.A., Matsudaira, P.: Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. PNAS 18, 10889–10894 (2006) Ootani, A., Li, X., Sangiorgi, E., Ho, Q.T., Ueno, H., Toda, S., Sugihara, H., Fujimoto, K., Weissman, I.L., Capecchi, M.R., Kuo, C.J.: Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med. 15, 701–706 (2009) Fujimichi, Y., Otsuka, K., Tomita, M., Iwasaki, T.: An efficient intestinal organoid system of direct sorting to evaluate stem cell competition in vitro. Sci. Rep. 9, 1–9 (2019) Driehuis, E., Kretzschmar, K., Clevers, H.: Establishment of patient-derived cancer organoids for drug-screening applications. Nat. Protoc. 15, 3380–3409 (2020) Kim, M., Mun, H., Sung, C.O., Cho, E.J., Jeon, H.J., Chun, S.M., Jung, D.J., Shin, T.H., Jeong, G.S., Kim, D.K., Choi, E.K., Jeong, S.Y., Taylor, A.M., Jain, S., Meyerson, M., Jang, S.J.: Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun. 10, 3991 (2019)