Development of an ABAQUS plugin tool for periodic RVE homogenisation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Jones RM (1999) Mechanics of composite materials. Brunner-Routledge, New York; London
Fan J, Njuguna J (2016) An introduction to lightweight composite materials and their use in transport structures. In: Njuguna J (ed) Lightweight composite structures in transport. Woodhead Publishing, Sawston, pp 3–34
Yancey RN (2016) Challenges, opportunities, and perspectives on lightweight composite structures: aerospace versus automotive. In: Njuguna J (ed) Lightweight composite structures in transport. Woodhead Publishing, Sawston, pp 35–52
Chamis C,C (1983) Simplified composite micromechanics equations for hygral, thermal and mechanical properties. In: Anonymous Ann. Conf. of the Society of the Plastics Industry (SPI) Reinforced Plastics/Composites Inst.; 38th; 7–11 Feb. 1983, Houston
Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574. https://doi.org/10.1016/0001-6160(73)90064-3
Cheng G-, Cai Y-, Xu L (2013) Novel implementation of homogenization method to predict effective properties of periodic materials. Acta Mech Sinica/Lixue Xuebao 29(4):550–556. https://doi.org/10.1007/s10409-013-0043-0
Zhou X, Gosling PD, Pearce CJ et al (2016) Perturbation-based stochastic multi-scale computational homogenization method for woven textile composites. Int J Solids Struct 80:368–380. https://doi.org/10.1016/j.ijsolstr.2015.09.008
Hill R (1963) Elastic properties of reinforced solids: Some theoretical principles. J Mech Phys Solids 11(5):357–372. https://doi.org/10.1016/0022-5096(63)90036-X
Drugan WJ, Willis JR (1996) A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Solids 44(4):497–524. https://doi.org/10.1016/0022-5096(96)00007-5
Abaqus/CAE, Simulia. http://www.3ds.com/products/simulia/portfolio/abaqus . Accessed 18 May 2018
Brockenbrough JR, Suresh S, Wienecke HA (1991) Deformation of metal-matrix composites with continuous fibers: geometrical effects of fiber distribution and shape. Acta Metall Mater 39(5):735–752. https://doi.org/10.1016/0956-7151(91)90274-5
Naik RA, Crews JH (1993) Micromechanical analysis of fiber-matrix interface stresses under thermomechanical loadings. Compos Mater Testing Design 11. https://doi.org/10.1520/stp12629s
Xia Z, Zhang Y, Ellyin F (2003) A unified periodical boundary conditions for representative volume elements of composites and applications. Int J Solids Struct 40(8):1907–1921. https://doi.org/10.1016/S0020-7683(03)00024-6
Sun CT, Vaidya RS (1996) Prediction of composite properties from a representative volume element. Compos Sci Technol 56(2):171–179. https://doi.org/10.1016/0266-3538(95)00141-7
Bonora N, Ruggiero A (2006) Micromechanical modeling of composites with mechanical interface—part II: damage mechanics assessment. Compos Sci Technol 66(2):323–332. https://doi.org/10.1016/j.compscitech.2005.04.043
Voyiadjis, GZ. Kattan, PI. (2014) Mechanics of Composite Materials with MATLAB. 1st ed. Berlin: Springer Berlin. https://www.springer.com/gb/book/9783540243533
Ferreira RTL, Rodrigues HC, Guedes JM et al (2014) Hierarchical optimization of laminated fiber reinforced composites. Compos Struct 107:246–259. https://doi.org/10.1016/j.compstruct.2013.07.051
Huang Y, Jin KK, Ha SK (2008) Effects of fiber arrangement on mechanical behavior of unidirectional composites. J Compos Mater 42(18):1851–1871. https://doi.org/10.1177/0021998308093910
Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234(7):2175–2182. https://doi.org/10.1016/j.cam.2009.08.077
E-xstream.com (2018). Digimat, the material modeling platform. http://www.e-xstream.com/ . Accessed 7 May 2018