Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phát triển nền tảng sắc ký lỏng tương tác ưa nước liên kết với khối phổ hình ảnh khử ion laser hỗ trợ ma trận cho phân tích định lượng N-glycan sử dụng thuốc thử hydrazide gắn đồng vị ổn định
Tóm tắt
Trong nghiên cứu này, khả năng của nền tảng sắc ký lỏng tương tác ưa nước mới phát triển (HILIC) kết hợp với khối phổ hình ảnh khử ion laser hỗ trợ ma trận (MALDI-MSI) cho phân tích định lượng N-glycan đã được chứng minh. Như một thí nghiệm chứng minh nguyên lý, các thuốc thử hydrazide gắn đồng vị ổn định nặng và nhẹ được sử dụng để chứng minh tính khả thi của nền tảng HILIC-MALDI-MSI cho phân tích định lượng đáng tin cậy của N-glycan. Phân tích MALDI-MSI bởi một khối phổ Orbitrap cho phép phát hiện N-glycan với độ phân giải cao và độ nhạy cao từ cột HILIC, cho phép tái xây dựng các sắc đồ LC cũng như đo khối lượng chính xác để suy diễn cấu trúc. Phân tích MALDI-MSI các dấu vết LC thu được cho thấy độ phân giải sắc ký được bảo toàn. N-glycan được giải phóng từ huyết thanh người được sử dụng để chứng minh tính hữu ích của nền tảng mới này trong phân tích định lượng N-glycan từ mẫu phức tạp. Nhờ vào việc giảm thiểu suppress ion do sự tách biệt HILIC cung cấp, so sánh giữa MALDI-MS và nền tảng mới phát triển HILIC-MALDI-MSI cho thấy HILIC-MALDI-MSI cung cấp độ bao phủ N-glycan cao hơn cũng như độ chính xác định lượng tốt hơn trong phân tích định lượng N-glycan được giải phóng từ huyết thanh người.
Từ khóa
#N-glycan #sắc ký lỏng tương tác ưa nước #MALDI-MSI #phân tích định lượng #đồng vị ổn định #khối phổTài liệu tham khảo
Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126(5):855–67.
Marth JD, Grewal PK. Mammalian glycosylation in immunity. Nat Rev Immunol. 2008;8(11):874–87.
Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta (BBA)-Gen Subj. 1999;1473(1):4–8.
Jaeken J. Congenital disorders of glycosylation. Ann N Y Acad Sci. 2010;1214(1):190–8.
Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer. 2005;5(7):526–42.
Blomme B, Van Steenkiste C, Callewaert N, Van Vlierberghe H. Alteration of protein glycosylation in liver diseases. J Hepatol. 2009;50(3):592–603.
Xu S, Ye M, Xu D, Li X, Pan C, Zou H. Matrix with high salt tolerance for the analysis of peptide and protein samples by desorption/ionization time-of-flight mass spectrometry. Anal Chem. 2006;78(8):2593–9.
Ohta Y, Iwamoto S, Kawabata S-I, Tanimura R, Tanaka K. Salt tolerance enhancement of liquid chromatography-matrix-assisted laser desorption/ionization-mass spectrometry using matrix additive methylenediphosphonic acid. Mass Spectrometry. 2014;3(1):A0031-A.
Börnsen KO. Influence of salts, buffers, detergents, solvents, and matrices on MALDI-MS protein analysis in complex mixtures. Mass Spectrometry of Proteins and Peptides: Mass Spectrometry of Proteins and Peptides. 2000:387–404.
Fu Y, Xu S, Pan C, Ye M, Zou H, Guo B. A matrix of 3, 4-diaminobenzophenone for the analysis of oligonucleotides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Nucleic Acids Res. 2006;34(13):e94-e.
Annesley TM. Ion suppression in mass spectrometry. Clin Chem. 2003;49(7):1041–4.
Mueller DR, Voshol H, Waldt A, Wiedmann B, Van Oostrum J. LC-MALDI MS and MS/MS—an efficient tool in proteome analysis. Subcellular Proteomics. Springer; 2007. p. 355–80.
Sparbier K, Asperger A, Resemann A, Kessler I, Koch S, Wenzel T, et al. Analysis of glycoproteins in human serum by means of glycospecific magnetic bead separation and LC-MALDI-TOF/TOF analysis with automated glycopeptide detection. J Biomol Tech. 2007;18(4):252.
Hattan SJ, Parker KC. Methodology utilizing MS signal intensity and LC retention time for quantitative analysis and precursor ion selection in proteomic LC-MALDI analyses. Anal Chem. 2006;78(23):7986–96.
Perlman DH, Huang H, Dauly C, Costello CE, McComb ME. Coupling of protein HPLC to MALDI-TOF MS using an on-target device for fraction collection, concentration, digestion, desalting, and matrix/analyte cocrystallization. Anal Chem. 2007;79(5):2058–66.
Maslen S, Sadowski P, Adam A, Lilley K, Stephens E. Differentiation of isomeric N-glycan structures by normal-phase liquid chromatography-MALDI-TOF/TOF tandem mass spectrometry. Anal Chem. 2006;78(24):8491–8.
Maslen SL, Goubet F, Adam A, Dupree P, Stephens E. Structure elucidation of arabinoxylan isomers by normal phase HPLC–MALDI-TOF/TOF-MS/MS. Carbohydr Res. 2007;342(5):724–35.
Zaia J. Mass spectrometry and glycomics. OMICS: J Integrative Biol. 2010;14(4):401–18.
Dixon RB, Bereman MS, Petitte JN, Hawkridge AM, Muddiman DC. One-year plasma N-linked glycome intra-individual and inter-individual variability in the chicken model of spontaneous ovarian adenocarcinoma. Int J Mass Spectrom. 2011;305(2):79–86.
Bereman MS, Williams TI, Muddiman DC. Development of a nanoLC LTQ orbitrap mass spectrometric method for profiling glycans derived from plasma from healthy, benign tumor control, and epithelial ovarian cancer patients. Anal Chem. 2008;81(3):1130–6.
Bereman MS, Young DD, Deiters A, Muddiman DC. Development of a robust and high throughput method for profiling N-linked Glycans derived from plasma glycoproteins by NanoLC−FTICR mass spectrometry. J Proteome Res. 2009;8(7):3764–70.
Wuhrer M, Koeleman CA, Deelder AM, Hokke CH. Normal-phase nanoscale liquid chromatography-mass spectrometry of underivatized oligosaccharides at low-femtomole sensitivity. Anal Chem. 2004;76(3):833–8.
Butler M, Quelhas D, Critchley AJ, Carchon H, Hebestreit HF, Hibbert RG, et al. Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis. Glycobiology. 2003;13(9):601–22.
Walker SH, Lilley LM, Enamorado MF, Comins DL, Muddiman DC. Hydrophobic derivatization of N-linked glycans for increased ion abundance in electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 2011;22(8):1309–17.
Walker SH, Papas BN, Comins DL, Muddiman DC. Interplay of permanent charge and hydrophobicity in the electrospray ionization of glycans. Anal Chem. 2010;82(15):6636–42.
Bereman MS, Comins DL, Muddiman DC. Increasing the hydrophobicity and electrospray response of glycans through derivatization with novel cationic hydrazides. Chem Commun. 2009;46(2):237–9.
Bowman MJ, Zaia J. Comparative glycomics using a tetraplex stable-isotope coded tag. Anal Chem. 2010;82(7):3023–31.
Xia B, Feasley CL, Sachdev GP, Smith DF, Cummings RD. Glycan reductive isotope labeling for quantitative glycomics. Anal Biochem. 2009;387(2):162–70.
Zhang Z, Jiang S, Li L. Semi-automated liquid chromatography–mass spectrometric imaging platform for enhanced detection and improved data analysis of complex peptides. J Chromatogr. 2013;1293:44–50.
Zhang Z, Kuang J, Li L. Liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometric imaging with sprayed matrix for improved sensitivity, reproducibility and quantitation. Analyst. 2013;138(21):6600–6.
Tie C, Zhang X-X. A new labelling reagent for glycans analysis by capillary electrophoresis-mass spectrometry. Anal Methods. 2012;4(2):357–9.
Hecht ES, McCord JP, Muddiman DC. Definitive screening design optimization of mass spectrometry parameters for sensitive comparison of filter and solid phase extraction purified. INLIGHT Plasma N-Glycans Anal Chem. 2015;87(14):7305–12.
Song T, Aldredge D, Lebrilla CB. A method for in-depth structural annotation of human serum glycans that yields biological variations. Anal Chem. 2015;87(15):7754–62. doi:10.1021/acs.analchem.5b01340.
Aldredge D, An HJ, Tang N, Waddell K, Lebrilla CB. Annotation of a serum N-glycan library for rapid identification of structures. J Proteome Res. 2012;11(3):1958–68. doi:10.1021/pr2011439.
Zhao M-Z, Zhang Y-W, Yuan F, Deng Y, Liu J-X, Zhou Y-L, et al. Hydrazino-s-triazine based labelling reagents for highly sensitive glycan analysis via liquid chromatography–electrospray mass spectrometry. Talanta. 2015;144:992–7.
Zhang Y, Zhu J, Yin H, Marrero J, Zhang X-X, Lubman DM. ESI–LC–MS method for haptoglobin fucosylation analysis in hepatocellular carcinoma and liver cirrhosis. J Proteome Res. 2015;14(12):5388–95.
Zhao M-Z, Tie C, Zhang Y-W, Deng Y, Zhang F-T, Zhou Y-L, et al. Deuterated hydrazino-s-triazine as highly-efficient labelling reagent for glycan relative quantification analysis using electrospray ionization mass spectrometry. RSC Adv. 2015;5(97):79317–22.
Wang J, Ye H, Zhang Z, Xiang F, Girdaukas G, Li L. Advancing matrix-assisted laser desorption/ionization-mass spectrometric imaging for capillary electrophoresis analysis of peptides. Anal Chem. 2011;83(9):3462–9.
Duncan MW, Roder H, Hunsucker SW. Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Brief Funct Genomic Proteomic. 2008;7(5):355–70.
Gusev AI, Wilkinson WR, Proctor A, Hercules DM. Improvement of signal reproducibility and matrix/comatrix effects in MALDI analysis. Anal Chem. 1995;67(6):1034–41.
Cohen SL, Chait BT. Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal Chem. 1996;68(1):31–7.
Karas M, Ehring H, Nordhoff E, Stahl B, Strupat K, Hillenkamp F, et al. Matrix-assisted laser desorption/ionization mass spectrometry with additives to 2, 5-dihydroxybenzoic acid. Org Mass Spectrom. 1993;28(12):1476–81.
Nordhoff E, Schürenberg M, Thiele G, Lübbert C, Kloeppel K-D, Theiss D, et al. Sample preparation protocols for MALDI-MS of peptides and oligonucleotides using prestructured sample supports. Int J Mass Spectrom. 2003;226(1):163–80.
Knochenmuss R, Zenobi R. MALDI ionization: the role of in-plume processes. Chem Rev. 2003;103(2):441–52.
Schlosser G, Pocsfalvi G, Huszár E, Malorni A, Hudecz F. MALDI-TOF mass spectrometry of a combinatorial peptide library: effect of matrix composition on signal suppression. J Mass Spectrom. 2005;40(12):1590–4.
Nicola AJ, Gusev AI, Proctor A, Jackson EK, Hercules DM. Application of the fast-evaporation sample preparation method for improving quantification of angiotensin II by matrix-laser desorption/ionization. Rapid Commun Mass Spectrom. 1995;9(12):1164–71.
Zhong X, Chen Z, Snovida S, Liu Y, Rogers JC, Li L. Capillary electrophoresis-electrospray ionization-mass spectrometry for quantitative analysis of glycans labeled with multiplex carbonyl-reactive tandem mass tags. Anal Chem. 2015;87(13):6527–34.
Yang S, Wang M, Chen L, Yin B, Song G, Turko IV, et al. QUANTITY: an isobaric tag for quantitative glycomics. Sci Rep. 2015;5:17585.
