Development of a heart rate variability and complexity model in predicting the need for life-saving interventions amongst trauma patients
Tóm tắt
Triage trauma scores are utilised to determine patient disposition, interventions and prognostication in the care of trauma patients. Heart rate variability (HRV) and heart rate complexity (HRC) reflect the autonomic nervous system and are derived from electrocardiogram (ECG) analysis. In this study, we aimed to develop a model incorporating HRV and HRC, to predict the need for life-saving interventions (LSI) in trauma patients, within 24 h of emergency department presentation. We included adult trauma patients (≥ 18 years of age) presenting at the emergency department of Singapore General Hospital between October 2014 and October 2015. We excluded patients who had non-sinus rhythms and larger proportions of artefacts and/or ectopics in ECG analysis. We obtained patient demographics, laboratory results, vital signs and outcomes from electronic health records. We conducted univariate and multivariate analyses for predictive model building. Two hundred and twenty-five patients met inclusion criteria, in which 49 patients required LSIs. The LSI group had a higher proportion of deaths (10, 20.41% vs 1, 0.57%, p < 0.001). In the LSI group, the mean of detrended fluctuation analysis (DFA)-α1 (1.24 vs 1.12, p = 0.045) and the median of DFA-α2 (1.09 vs 1.00, p = 0.027) were significantly higher. Multivariate stepwise logistic regression analysis determined that a lower Glasgow Coma Scale, a higher DFA-α1 and higher DFA-α2 were independent predictors of requiring LSIs. The area under the curve (AUC) for our model (0.75, 95% confidence interval, 0.66–0.83) was higher than other scoring systems and selected vital signs. An HRV/HRC model outperforms other triage trauma scores and selected vital signs in predicting the need for LSIs but needs to be validated in larger patient populations.
Tài liệu tham khảo
Sauaia A, Moore FA, Moore EE, Moser KS, Brennan R, Read RA, et al. Epidemiology of trauma deaths: a reassessment. J Trauma Acute Care Surg. 1995;38(2):185–93.
Organization WH. Injuries and violence: the facts 2014. 2014.
Champion HR, Sacco WJ, Copes WS, Gann DS, Gennarelli TA, Flanagan ME. A revision of the trauma score. J Trauma. 1989;29
Kondo Y, Abe T, Kohshi K, Tokuda Y, Cook EF, Kukita I. Revised trauma scoring system to predict in-hospital mortality in the emergency department: Glasgow coma scale, age, and systolic blood pressure score. Crit Care. 2011;15(4):1–8.
Sartorius D, Le Manach Y, David JS, Rancurel E, Smail N, Thicoïpí M, et al. Mechanism, Glasgow coma scale, age, and arterial pressure (MGAP): a new simple prehospital triage score to predict mortality in trauma patients. Crit Care Med. 2010;38
MacKenzie EJ, Rivara FP, Jurkovich GJ, Nathens AB, Frey KP, Egleston BL, et al. A national evaluation of the effect of trauma-center care on mortality. N Engl J Med. 2006;354(4):366–78.
Champion HR, Sacco WJ, Carnazzo AJ, Copes W, Fouty WJ. Trauma score. Crit Care Med. 1981;9(9):672–6.
Baker SP, O'Neill B, Haddon W, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14
Civil ID, Schwab CW. The abbreviated injury scale, 1985 revision: a condensed chart for clinical use. J Trauma. 1988;28
Boyd CR, Tolson MA, Copes WS. Evaluating trauma care: the TRISS method. Trauma score and the injury severity score. J Trauma. 1987;27(4):370–8.
Champion HR, Sacco WJ, Hannan DS, Lepper RL, Atzinger ES, Copes WS, et al. Assessment of injury severity: the triage index. Crit Care Med. 1980;8(4):201–8.
Bazzoli GJ, Madura KJ, Cooper GF, MacKenzie EJ, Maier RV. Progress in the development of trauma systems in the United States: results of a national survey. Jama. 1995;273(5):395–401.
Garber BG, Hebert PC, Wells G, Yelle J-D. Validation of trauma and injury severity score in blunt trauma patients by using a Canadian trauma registry. J Trauma Acute Care Surg. 1996;40(5):733–7.
Carney C. Prehospital care-a UK perspective. Br Med Bull. 1999;55(4):757–66.
Chawda M, Hildebrand F, Pape HC, Giannoudis PV. Predicting outcome after multiple trauma: which scoring system? Injury. 2004;35(4):347–58.
Raux M, Sartorius D, Le Manach Y, David J-S, Riou B, Vivien B. What do prehospital trauma scores predict besides mortality? J Trauma Acute Care Surg. 2011;71(3):754–9.
Rahmani F, Ebrahimi Bakhtavar H, Shams Vahdati S, Hosseini M, Mehdizadeh ER. Evaluation of MGAP and GAP trauma scores to predict prognosis of multiple-trauma patients. Trauma Mon. In press (In press):e33249
Subbe C, Kruger M, Rutherford P, Gemmel L. Validation of a modified early warning score in medical admissions. Qjm. 2001;94(10):521–6.
Yperzeele L, van Hooff RJ, De Smedt A, Nagels G, Hubloue I, De Keyser J, et al. Feasibility, reliability and predictive value of in-ambulance heart rate variability registration. PLoS One. 2016;11(5):e0154834.
Edla S, Reisner AT, Liu J, Convertino VA, Carter R 3rd, Reifman J. Is heart rate variability better than routine vital signs for prehospital identification of major hemorrhage? Am J Emerg Med. 2015;33(2):254–61.
Proctor KG, Atapattu SA, Duncan RC. Heart rate variability index in trauma patients. J Trauma. 2007;63(1):33–43.
Mejaddam AY, Birkhan OA, Sideris AC, Van der Wilden GM, Imam AM, Hwabejire JO, et al. Real-time heart rate entropy predicts the need for lifesaving interventions in trauma activation patients. J Trauma Acute Care Surg. 2013;75(4):607–12.
Rickards CA, Ryan KL, Ludwig DA, Convertino VA. Is heart period variability associated with the administration of lifesaving interventions in individual prehospital trauma patients with normal standard vital signs? Crit Care Med. 2010;38(8):1666–73.
Liu NT, Holcomb JB, Wade CE, Darrah MI, Salinas J. Utility of vital signs, heart rate variability and complexity, and machine learning for identifying the need for lifesaving interventions in trauma patients. Shock. 2014;42(2):108–14.
Ho AFW, Chew D, Wong TH, Ng YY, Pek PP, Lim SH, et al. Prehospital trauma care in Singapore. Prehospital Emergency Care. 2015;19(3):409–15.
Wen LS, Venkataraman A, Sullivan AF, Camargo CA. National inventory of emergency departments in Singapore. Int J Emerg Med. 2012;5(1):38.
Tarvainen MP, Niskanen JP, Lipponen JA, Ranta-Aho PO, Karjalainen PA. Kubios HRV—heart rate variability analysis software. Comput Methods Prog Biomed. 2014;113(1):210–20.
Green SB. How many subjects does it take to do a regression analysis. Multivar Behav Res. 1991;26(3):499–510.
Heldeweg MLA, Liu N, Koh ZX, Fook-Chong S, Lye WK, Harms M, et al. A novel cardiovascular risk stratification model incorporating ECG and heart rate variability for patients presenting to the emergency department with chest pain. Crit Care. 2016;20(1):179.
Cancio LC, Batchinsky AI, Salinas J, Kuusela T, Convertino VA, Wade CE, et al. Heart-rate complexity for prediction of prehospital lifesaving interventions in trauma patients. J Trauma. 2008;65(4):813–9.
Variability Hr. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17:354–81.
Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ. Power Spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213(4504):220–2.
Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84(2):482–92.
Cooke WH. Heart rate variability and its association with mortality in prehospital trauma patients. J Trauma. 2006;60(2):363–70.
Batchinsky AI, Cancio LC, Salinas J, Kuusela T, Cooke WH, Wang JJ, et al. Prehospital loss of R-to-R interval complexity is associated with mortality in trauma patients. J Trauma Acute Care Surg. 2007;63(3):512–8.
Batchinsky AI, Wolf SE, Molter N, Kuusela T, Jones JA, Moraru C, et al. Assessment of cardiovascular regulation after burns by nonlinear analysis of the electrocardiogram. Journal of burn care & research. 2008;29(1):56–63.
Ravelli F, Antolini R. Complex dynamics underlying the human electrocardiogram. Biol Cybern. 1992;67(1):57–65.
Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput. 2006;44(12):1031–51.
Liu NT, Holcomb JB, Wade CE, Batchinsky AI, Cancio LC, Darrah MI, et al. Development and validation of a machine learning algorithm and hybrid system to predict the need for life-saving interventions in trauma patients. Med Biol Eng Comput. 2014;52(2):193–203.
Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: An Interdisciplinary Journal of Nonlinear Science. 1995;5(1):82–7.
Ho KKL, Moody GB, Peng C-K, Mietus JE, Larson MG, Levy D, et al. Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation. 1997;96(3):842–8.
Rojo-Álvarez JL, Sanchez-Sanchez A, Barquero-Perez O, Goya-Esteban R, Everss E, Mora-Jimenez I, et al. Analysis of physiological meaning of detrended fluctuation analysis in heart rate variability using a lumped parameter model. In: 2007 Computers in Cardiology; 2007. IEEE.
Ryan KL, Rickards CA, Ludwig DA, Convertino VA. Tracking central hypovolemia with ECG in humans: cautions for the use of heart period variability in patient monitoring. Shock. 2010;33(6):583–9.
Liu NT, Holcomb JB, Wade CE, Salinas J. Improving the prediction of mortality and the need for life-saving interventions in trauma patients using standard vital signs with heart-rate variability and complexity. Shock. 2015;43(6):549–55.
Xhyheri B, Manfrini O, Mazzolini M, Pizzi C, Bugiardini R. Heart rate variability today. Prog Cardiovasc Dis. 2012;55(3):321–31.
Liu NT, Batchinsky AI, Cancio LC, Salinas J. The impact of noise on the reliability of heart-rate variability and complexity analysis in trauma patients. Comput Biol Med. 2013;43(11):1955–64.
Sethuraman G, Ryan KL, Rickards CA, Convertino VA. Ectopy in trauma patients: cautions for use of heart period variability in medical monitoring. Aviat Space Environ Med. 2010;81(2):125–9.
Van Esbroeck A, Lace BR, Sisley A, Syed Z, Rubinfeld IS. Predicting mortality in trauma patients: the discriminative accuracy of pre-hospital physiological variables vs. the current registry standard Trauma-Related Injury Severity Score (TRISS). Journal of the American College of Surgeons. 215(3):S51.
Karamanos E, Van Esbroeck A, Mohanty S, Syed Z, Rubinfeld I. Quality and outcomes reporting in trauma using international statistical classification for diseases. Ninth Revision codes J Surg Res. 2015;199(2):529–35.