Development of a fully automated desktop chemical vapor deposition system for programmable and controlled carbon nanotube growth
Tóm tắt
We have rationally designed and developed a fully automated desktop furnace system that enables programmable chemical vapour deposition growth of carbon nanotubes with controlled height, density, and pattern architecture. Comprising several essential components involving a heating furnace, mass flowmeters, and computer controller, the developed system realizes controlled and practical carbon nanotube growth without resort to expensive and ponderous instruments. By programming, modifying, and loading the reusable recipes in the developed system, systematic and reproducible growths of carbon nanotubes with desired morphology and dimension can be performed. Growth results with controlled height, density, and pattern are demonstrated through the actual operations, confirming the validity and usefulness of the developed system towards various practical applications.
Tài liệu tham khảo
Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58
Vairavapandian D, Vichchulada P, Lay MD (2008) Preparation and modification of carbon nanotubes: review of recent advances and applications in catalysis and sensing. Anal Chim Acta 626:119–129
De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539
Shah KA, Tali BA (2016) Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater Sci Semicond Process 41:67–82
Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758
Handuja S, Srivastava P, Vankar VD (2010) On the growth and microstructure of carbon nanotubes grown by thermal chemical vapor deposition. Nanoscale Res Lett 5:1211–1216
Ghoranneviss M, Elahi AS (2016) Review of carbon nanotubes production by thermal chemical vapor deposition technique. Mol Cryst Liq Cryst 629:158–164
See CH, Harris AT (2007) A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind Eng Chem Res 46:997–1012
Ok JG, Tawfick SH, Juggernauth KA, Sun K, Zhang YY, Hart AJ (2010) Electrically addressable hybrid architectures of zinc oxide nanowires grown on aligned carbon nanotubes. Adv Func Mater 20:2470–2480
Kunadian I, Andrews R, Qian DL, Menguc MP (2009) Growth kinetics of MWCNTs synthesized by a continuous-feed CVD method. Carbon 47:384–395
Jung D, Han M, Lee GS (2014) Regrowth analysis of multiwalled carbon nanotube forests. Appl Phys Express 7:4
Gangele A, Sharma CS, Pandey AK (2017) Synthesis of patterned vertically aligned carbon nanotubes by PECVD using different growth techniques: a review. J Nanosci Nanotechnol 17:2256–2273
Park SJ, Ok JG, Park HJ, Lee KT, Lee JH, Kim JD, Cho E, Baac HW, Kang S, Guo LJ, Hart AJ (2018) Modulation of the effective density and refractive index of carbon nanotube forests via nanoimprint lithography. Carbon 129:8–14
Razib MAB, Saleh T (2019) A review on micro-patterning processes of vertically aligned carbon nanotubes array (VACNTs array). Curr Nanosci 15:328–353
Bedewy M, Meshot ER, Guo HC, Verploegen EA, Lu W, Hart AJ (2009) Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth. J Phys Chem C 113:20576–20582
Bedewy M, Meshot ER, Reinker MJ, Hart AJ (2011) Population growth dynamics of carbon nanotubes. ACS Nano 5:8974–8989
Meshot ER, Bedewy M, Lyons KM, Woll AR, Juggernauth KA, Tawfick S, Hart AJ (2010) Measuring the lengthening kinetics of aligned nanostructures by spatiotemporal correlation of height and orientation. Nanoscale 2:896–900
Ok JG, Lee JY, Baac HW, Tawfick SH, Guo LJ, Hart AJ (2014) Rapid anisotropic photoconductive response of ZnO-coated aligned carbon nanotube sheets. ACS Appl Mater Interfaces 6:874–881
Tawfick S, De Volder M, Copic D, Park SJ, Oliver CR, Polsen ES, Roberts MJ, Hart AJ (2012) Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties. Adv Mater 24:1628–1674