Development of a coronal mass ejection arrival time forecasting system using interplanetary scintillation observations

Earth, Planets and Space - Tập 71 - Trang 1-11 - 2019
Kazumasa Iwai1, Daikou Shiota1,2, Munetoshi Tokumaru1, Ken’ichi Fujiki1, Mitsue Den2, Yûki Kubo2
1Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
2National Institute of Information and Communications Technology, Koganei, Japan

Tóm tắt

Coronal mass ejections (CMEs) cause disturbances in the environment of the Earth when they arrive at the Earth. However, the prediction of the arrival of CMEs still remains a challenge. We have developed an interplanetary scintillation (IPS) estimation system based on a global magnetohydrodynamic (MHD) simulation of the inner heliosphere to predict the arrival time of CMEs. In this system, the initial speed of a CME is roughly derived from white-light coronagraph observations. Then, the propagation of the CME is calculated by a global MHD simulation. The IPS response is estimated by the three-dimensional density distribution of the inner heliosphere derived from the MHD simulation. The simulated IPS response is compared with the actual IPS observations made by the Institute for Space-Earth Environmental Research, Nagoya University, and shows good agreement with that observed. We demonstrated how the simulation system works using a halo CME event generated by a X9.3 flare observed on September 5, 2017. We find that the CME simulation that best estimates the IPS observation can more accurately predict the time of arrival of the CME at the Earth. These results suggest that the accuracy of the CME arrival time can be improved if our current MHD simulations include IPS data.

Tài liệu tham khảo

Arge CN, Pizzo VJ (2000) Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J Geophys Res 105:10465–10480. https://doi.org/10.1029/1999JA000262 Brueckner GE, Howard RA, Kooman MJ, Korendyke CM, Michels DJ, Moses JD, Socker DG, Dere KP, Lamy PL, Llebaria A et al (1995) The large angle spectroscopic coronagraph (LASCO). Sol Phys 162:357. https://doi.org/10.1007/BF00733434 Cargill PJ (2004) On the aerodynamic drag force acting on interplanetary coronal mass ejections. Sol Phys 221:135. https://doi.org/10.1023/B:SOLA-0000033366-10725-a2 Chen J (1996) Theory of prominence eruption and propagation: interplanetary consequences. J Geophys Res 101(A12):27499. https://doi.org/10.1029/96JA02644 Gapper GR, Hewish A, Purvis A, Duffet-Smith PJ (1982) Observing interplanetary disturbances from the ground. Nature 296:633–636 Glyantsev AV, Tyul’bashev SA, Chashei IV, Shishov VI (2015) Interplanetary-scintillation observations of coronal mass ejections near the maximum of the 24th solar-activity cycle. Astron Rep 59(1):40–47. https://doi.org/10.1134/S1063772915010047 Gopalswamy N, Lara A, Yashiro S, Kaiser ML, Howard RA (2001) Predicting the 1-AU arrival times of coronal mass ejections. J Geophys Res 106(A12):29207. https://doi.org/10.1029/2001JA000177 Hayashi K, Kojima M, Tokumaru M, Fujiki K (2003) MHD tomography using interplanetary scintillation measurement. J Geophys Res 108(A3):1102. https://doi.org/10.1029/2002JA009567 Iju T, Tokumaru M, Fujiki K (2013) Radial speed evolution of interplanetary coronal mass ejections during solar cycle 23. Sol Phys 288:331. https://doi.org/10.1007/s11207-013-0297-5 Iju T, Tokumaru M, Fujiki K (2014) Kinematic properties of slow ICMEs and an interpretation of a modified drag equation for fast and moderate ICMEs. Sol Phys 289:2157. https://doi.org/10.1007/s11207-014-0472-3 Jackson BV, Hick PL, Kojima M, Yokobe A (1998) Heliospheric tomography using interplanetary scintillation observations. 1 Combined Nagoya and Cambridge observations. J Geophys Res 103:12049. https://doi.org/10.1029/97ja02528 Jackson BV, Hick PP, Buffington A, Kojima TM, Fujiki K, Ohmi T, Yamashita M (2003) Time-dependent tomography of hemispheric features using interplanetary scintillation (IPS) remote-sensing observations, in Velli, M., Bruno, R, and Malara, F. Solar Wind Ten 679:75–78 Jackson BV, Hick PP, Buffington A, Bisi MM, Clover JM, Tokumaru M, Fujiki K (2011) Three-dimensional reconstruction of heliospheric structure using iterative tomography: a review. J Atmos Sol Terr Phys 73:1214. https://doi.org/10.1016/j.jastp.2010.10.007 Jackson BV, Odstrcil D, Yu H-S, Hick PP, Buffington A, Mejia-Ambriz JC, Kim J, Hong S, Kim Y, Han J, Tokumaru M (2015) The UCSD IPS solar wind boundary and its use in the ENLIL 3D-MHD prediction model. Space Weather 13:104–115. https://doi.org/10.1002/2014SW001130 Johri A, Manoharan PK (2016) An intense flare-CME event in 2015: propagation and interaction effects between the Sun and Earth’s orbit. Sol Phys 291(5):1433–1446. https://doi.org/10.1007/s11207-016-0900-7 Kageyama A, Sato T (2004) “Yin-Yang grid”: an overset grid in spherical geometry. Geochem Geophys Geosyst 5:Q09005. https://doi.org/10.1029/2004GC000734 Kojima M, Tokumaru M, Watanabe H, Yokobe A, Jackson BV, Hick PL (1998) Heliospheric tomography using interplanetary scintillation observations: 2. Latitude and heliocentric distance dependence of solar wind structure at 0.1–1 AU. J Geophys Res. https://doi.org/10.1029/97ja02162 Manoharan PK (2006) Evolution of coronal mass ejections in the inner heliosphere: a study using white-light and scintillation images. Solar Phys 235:345. https://doi.org/10.1007/s11207-006-0100-y Möstl C, Isavnin A, Boakes PD, Kilpua EKJ, Davies JA, Harrison RA et al (2017) Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory. Space Weather 15:955–970. https://doi.org/10.1002/2017SW001614 Odstrcil D (2003) Modeling 3-D solar wind structure. Adv Space Res 32:497–506. https://doi.org/10.1016/S0273-1177(03)00332-6 Robbrecht E, Berghmans D, Van der Linden RAM (2009) Automated LASCO CME catalog for solar cycle 23: are CMEs scale invariant? Astrophys J 691(2):1222–1234. https://doi.org/10.1088/0004-637X/691/2/1222 Rollett T, Möstl C, Isavnin A, Davies JA, Kubicka M, Amerstorfer UV, Harrison RA (2016) ElEvoHI: a novel CME prediction tool for heliospheric imaging combining an elliptical front with drag-based model fitting. Astrophys J 824:131. https://doi.org/10.3847/0004-637X/824/2/131 Shen C, Xu M, Wang Y, Chi Y, Luo B (2018) Why the shock-ICME complex structure is important: learning from the early 2017 September CMEs. Astrophys J 861:28. https://doi.org/10.3847/1538-4357/aac204 Shiota D, Kataoka R (2016) Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME). Space Weather 14:56–75. https://doi.org/10.1002/2015SW001308 Shiota D, Kataoka R, Miyoshi Y, Hara T, Tao C, Masunaga K, Futaana Y, Terada N (2014) Inner heliosphere MHD modeling system applicable to space weather forecasting for the other planets. Space Weather 12:187–204. https://doi.org/10.1002/2013SW000989 Tokumaru M, Kojima M, Fujiki K, Yokobe A (2000) Three-dimensional propagation of interplanetary disturbances detected with radio scintillation measurements at 327 MHz. J Geophys Res 105(A5):10435. https://doi.org/10.1029/2000JA900001 Tokumaru M, Kojima M, Fujiki K, Yamashita M, Yokobe A (2003) Toroidal-shaped interplanetary disturbance associated with the halo coronal mass ejection event on 14 July 2000. J Geophys Res 108(A5):1220. https://doi.org/10.1029/2002JA009574 Tokumaru M, Kojima M, Fujiki K, Yamashita M (2006) Tracking heliospheric disturbances by interplanetary scintillation. Nonlinear Process Geophys 13:329 Tokumaru M, Kojima M, Fujiki K, Maruyama K, Maruyama Y, Ito H, Iju T (2011) A newly developed UHF radiotelescope for interplanetary scintillation observations: Solar Wind Imaging Facility. Radio Sci 46:RS0F02. https://doi.org/10.1029/2011rs004694 Vršnak B, Gopalswamy N (2002) Influence of the aerodynamic drag on the motion of interplanetary ejecta. J Geophys Res 107(A2):1019. https://doi.org/10.1029/2001JA000120 Woo R, Armstrong JW (1979) Spacecraft radio scattering observations of the power spectrum of electron density fluctuations in the solar wind. J Geophys Res 84:7288. https://doi.org/10.1029/JA084iA12p07288 Yashiro S, Gopalswamy N, Michalek G, St. Cyr OC, Plunkett SP, Rich NB, Howard RA (2004) A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J Geophys Res 109:A07105. https://doi.org/10.1029/2003ja010282 Young AT (1971) Interpretation of interplanetary scintillations. Astrophys J 168:543. https://doi.org/10.1086/151108 Yu H-S, Jackson BV, Hick PP, Buffington A, Odstrcil D, Wu C-C, Davies JA, Bisi MM, Tokumaru M (2015) 3D reconstruction of interplanetary scintillation (IPS) remote-sensing data: global solar wind boundaries for driving 3D-MHD models. Sol Phys 290(9):2519–2538. https://doi.org/10.1007/s11207-015-0685-0