Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phát triển hệ thống sàng lọc điều biến lộ trình dựa trên tế bào để sàng lọc các ứng cử viên liệu pháp ung thư nhắm mục tiêu
Tóm tắt
Để khắc phục những vấn đề liên quan đến tiên lượng kém và đối phó với tình trạng không đáp ứng với các liệu pháp hóa trị khác nhau, cần phát triển các tác nhân điều trị ung thư nhắm mục tiêu. Ngoài ra, cần phải hiểu các mục tiêu phân tử của các ứng cử viên thuốc và thuốc trong bối cảnh các con đường tín hiệu tế bào nhằm thúc đẩy sự phát triển của các liệu pháp ung thư nhắm mục tiêu. Để giải quyết những vấn đề này, chúng tôi đã thiết lập một hệ thống sàng lọc thuốc dựa trên tế bào và tập trung vào các con đường tín hiệu như MYC, E2F, WNT, ERK, NRF1/2, HIF1α, p53, YY1 và NFκB. Những con đường tín hiệu này thường bị rối loạn mạnh mẽ trong nhiều loại ung thư, bao gồm cả ung thư dạ dày. Hệ thống sàng lọc dựa trên thí nghiệm luciferase đom đóm được phát triển trong dòng tế bào ung thư dạ dày phù hợp để sàng lọc một danh mục thuốc lớn, các ứng cử viên thuốc, các chất ức chế phân tử nhỏ, hóa chất và các công thức thuốc thay thế. Các dòng tế bào ổn định được phát triển đã được kiểm chứng tính năng báo cáo hoạt động lộ trình của chúng bằng cách sử dụng các tác nhân điều biến lộ trình tương ứng. Một thử nghiệm sàng lọc trung bình với khái niệm, tập trung vào con đường tín hiệu YY1 cũng đã tiết lộ mối liên hệ giữa các chất chẹn kênh canxi và tín hiệu YY1. Các tế bào thí nghiệm của hệ thống sàng lọc con đường tín hiệu được phát triển là tài nguyên quý giá và sẽ phục vụ như nền tảng sàng lọc cho các thư viện thuốc hướng đến việc phát triển các liệu pháp ung thư nhắm mục tiêu.
Từ khóa
#điều trị ung thư #liệu pháp nhắm mục tiêu #sàng lọc thuốc #đường tín hiệu tế bào #ung thư dạ dàyTài liệu tham khảo
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011. https://doi.org/10.1016/j.cell.2011.02.013.
Martin GS. Cell signaling and cancer. Cancer Cell. 2003. https://doi.org/10.1016/s1535-6108(03)00216-2.
Sebolt-Leopold JS, English JM. Mechanisms of drug inhibition of signalling molecules. Nature. 2006. https://doi.org/10.1038/nature04874.
Bhullar KS, Lagarón NO, McGowan EM, et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer. 2018. https://doi.org/10.1186/s12943-018-0804-2.
Lovén J, Hoke HA, Lin CY, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013. https://doi.org/10.1016/j.cell.2013.03.036.
de Souza CRT, Leal MF, Calcagno DQ, et al. MYC deregulation in gastric cancer and its clinicopathological implications. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0064420.
Johnson DG, Schneider-Broussard R. Role of E2F in cell cycle control and cancer. Front Biosci. 1998. https://doi.org/10.2741/a291.
Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer: an in-depth literature review. World J Exp Med. 2015;5:84–102. https://doi.org/10.5493/wjem.v5.i2.84.
Yang M, Huang C-Z. Mitogen-activated protein kinase signaling pathway and invasion and metastasis of gastric cancer. World J Gastroenterol. 2015;21:11673–9. https://doi.org/10.3748/wjg.v21.i41.11673.
Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the Hallmarks of Cancer. Cancer Cell. 2018. https://doi.org/10.1016/j.ccell.2018.03.022.
Kitajima Y, Miyazaki K. The critical impact of HIF-1α on gastric cancer biology. Cancers (Basel). 2013. https://doi.org/10.3390/cancers5010015.
Busuttil RA, Zapparoli GV, Haupt S, et al. Role of p53 in the progression of gastric cancer. Oncotarget. 2014. https://doi.org/10.18632/oncotarget.2434.
Kang W, Tong JHM, Chan AWH, et al. Yin Yang 1 contributes to gastric carcinogenesis and its nuclear expression correlates with shorter survival in patients with early stage gastric adenocarcinoma. J Transl Med. 2014. https://doi.org/10.1186/1479-5876-12-80.
Sokolova O, Naumann M. NF-κB signaling in gastric cancer. Toxins (Basel). 2017. https://doi.org/10.3390/toxins9040119.
Periasamy J, Muthuswami M, Rao DB, et al. Stratification and delineation of gastric cancer signaling by in vitro transcription factor activity profiling and integrative genomics. Cell Signal. 2014. https://doi.org/10.1016/j.cellsig.2014.01.017.
Sherf BA, Navarro SL, Hannah RR, Wood KV. Promega corporation. Promega notes: dual-luciferaseTM reporter assay: an advanced co-reporter technology integrating firefly and renilla ruciferase. Promega Notes Mag Number 57. 1996.
Xie W, Silvers R, Ouellette M, Wu Z, Lu Q, Li H, et al. A luciferase reporter gene system for high-throughput screening of γ-Globin gene activators. Methods Mol. Biol. 2016. https://doi.org/10.1007/978-1-4939-3673-1_14.
Periasamy J, Muthuswami M, Ramesh V, et al. Nimesulide and celecoxib inhibits multiple oncogenic pathways in gastric cancer cells. J Cancer Sci Ther. 2013. https://doi.org/10.4172/1948-5956.1000198.
Dyer BW, Ferrer FA, Klinedinst DK, Rodriguez R. A noncommercial dual luciferase enzyme assay system for reporter gene analysis. Anal Biochem. 2000. https://doi.org/10.1006/abio.2000.4605.
Gossen M, Bonin AL, Bujard H. Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends Biotechnol. 1994. https://doi.org/10.1016/0167-7799(94)90101-5.
Handeli S, Simon JA. A small-molecule inhibitor of Tcf/β-catenin signaling down-regulates PPARγ and PPARδ activities. Mol Cancer Ther. 2008;7:521–9. https://doi.org/10.1158/1535-7163.MCT-07-2063.
Vandyke K, Fitter S, Zannettino ACW. The tyrosine kinase inhibitor dasatinib (SPRYCEL) inhibits chondrocyte activity and proliferation. Blood Cancer J. 2011. https://doi.org/10.1038/bcj.2011.1.
Chesler L, Schlieve C, Goldenberg DD, et al. Inhibition of phosphatidylinositol 3-kinase destabilizes Mycn protein and blocks malignant progression in neuroblastoma. Cancer Res. 2006. https://doi.org/10.1158/0008-5472.CAN-05-2769.
Bonavida B. Therapeutic YY1 inhibitors in cancer: all in one. Crit Rev Oncog. 2017. https://doi.org/10.1615/CritRevOncog.2017020472.
Deck LM, Hunsaker LA, Vander Jagt TA, et al. Activation of anti-oxidant Nrf2 signaling by enone analogues of curcumin. Eur J Med Chem. 2018. https://doi.org/10.1016/j.ejmech.2017.11.048.
Koroth J, Nirgude S, Tiwari S, et al. Investigation of anti-cancer and migrastatic properties of novel curcumin derivatives on breast and ovarian cancer cell lines. BMC Complement Altern Med. 2019. https://doi.org/10.1186/s12906-019-2685-3.
Cianfruglia L, Minnelli C, Laudadio E, et al. Side effects of curcumin: epigenetic and antiproliferative implications for normal dermal fibroblast and breast cancer cells. Antioxidants. 2019. https://doi.org/10.3390/antiox8090382.
Mbese Z, Khwaza V, Aderibigbe BA. Curcumin and its derivatives as potential therapeutic agents in prostate, colon and breast cancers. Molecules. 2019. https://doi.org/10.3390/molecules24234386.
Meijer L, Borgne A, Mulner O, et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem. 1997. https://doi.org/10.1111/j.1432-1033.1997.t01-2-00527.x.
Wu D, Yotnda P. Induction and testing of hypoxia in cell culture. J Vis Exp. 2011. https://doi.org/10.3791/2899.
Gómez-Arnaiz S, Tate RJ, Grant MH. Cytotoxicity of cobalt chloride in brain cell lines—a comparison between astrocytoma and neuroblastoma cells. Toxicol Vitr. 2020. https://doi.org/10.1016/j.tiv.2020.104958.
Tripathi VK, Subramaniyan SA, Hwang I. Molecular and cellular response of co-cultured cells toward cobalt chloride (CoCl2)-induced hypoxia. ACS Omega. 2019. https://doi.org/10.1021/acsomega.9b01474.
Lee JH, Choi SH, Baek MW, et al. CoCl2 induces apoptosis through the mitochondria- and death receptor-mediated pathway in the mouse embryonic stem cells. Mol Cell Biochem. 2013. https://doi.org/10.1007/s11010-013-1635-5.
Nakajima S, Kato H, Takahashi S, et al. Inhibition of NF-κB by MG132 through ER stress-mediated induction of LAP and LIP. FEBS Lett. 2011. https://doi.org/10.1016/j.febslet.2011.05.047.
Muthuswami M, Ramesh V, Banerjee S, et al. Breast tumors with elevated expression of 1q candidate genes confer poor clinical outcome and sensitivity to Ras/PI3K inhibition. PLoS ONE. 2013;8:e77553–e77553. https://doi.org/10.1371/journal.pone.0077553.
Panneerpandian P, Devanandan HJ, Marimuthu A, et al. Abacavir induces the transcriptional activity of YY1 and other oncogenic transcription factors in gastric cancer cells. Antivir Res. 2020. https://doi.org/10.1016/j.antiviral.2019.104695.
Capiod T, Shuba Y, Skryma R, Prevarskaya N. Calcium signalling and cancer cell growth. 2007. https://doi.org/10.1007/978-1-4020-6191-2_15.
Mekahli D, Bultynck G, Parys JB, de Smedt H, Missiaen L. Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol. 2011. https://doi.org/10.1101/cshperspect.a004317.
Baumeister P, Luo S, Skarnes WC, et al. Endoplasmic reticulum stress induction of the Grp78/BiP promoter: activating mechanisms mediated by YY1 and its interactive chromatin modifiers. Mol Cell Biol. 2005;25:4529–40. https://doi.org/10.1128/MCB.25.11.4529-4540.2005.
Castellano G, Torrisi E, Ligresti G, Malaponte G, Militello L, Russo AE, et al. The involvement of the transcription factor Yin Yang 1 in cancer development and progression. Cell Cycle. 2009. https://doi.org/10.4161/cc.8.9.8314.
Aggarwal BB, Sethi G, Baladandayuthapani V, Krishnan S, Shishodia S. Targeting cell signaling pathways for drug discovery: an old lock needs a new key. J Cell Biochem. 2007. https://doi.org/10.1002/jcb.21500.
McDermott U. Cancer cell lines as patient avatars for drug response prediction. Nat Genet. 2018. https://doi.org/10.1038/s41588-018-0245-2.
Fanunza E, Frau A, Sgarbanti M, et al. Development and validation of a novel dual luciferase reporter gene assay to quantify ebola virus VP24 inhibition of IFN signaling. Viruses. 2018. https://doi.org/10.3390/v10020098.
Mouldy S, Sioud M (2006) Main approaches to target discovery and validation. In: Target discovery and validation reviews and protocols.
An WF, Tolliday N. Cell-based assays for high-throughput screening. Mol Biotechnol. 2010. https://doi.org/10.1007/s12033-010-9251-z.
Shaw HV, Koval A, Katanaev VL. A high-throughput assay pipeline for specific targeting of frizzled GPCRs in cancer. Methods Cell Biol. 2019. https://doi.org/10.1016/bs.mcb.2018.08.006.
Tian M, Zeng T, Liu M, et al. A cell-based high-throughput screening method based on a ubiquitin-reference technique for identifying modulators of E3 ligases. J Biol Chem. 2019. https://doi.org/10.1074/jbc.RA118.003822.
Antonova-Koch Y, Meister S, Abraham M, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. (80-). 2018. https://doi.org/10.1126/science.aat9446.
Sarwono AEY, Mitsuhashi S, Bin KMH, et al. Repurposing existing drugs: identification of irreversible IMPDH inhibitors by high-throughput screening. J Enzyme Inhib Med Chem. 2019. https://doi.org/10.1080/14756366.2018.1540474.
Tomasello L, Cluts L, Croce CM. Experimental validation of microRNA targets: luciferase reporter assay. Methods Mol. Biol. 2019. https://doi.org/10.1007/978-1-4939-9207-2_17.
Godfraind T. Discovery and development of calcium channel blockers. Front Pharmacol. 2017;8:286. https://doi.org/10.3389/fphar.2017.00286.
Johnson R, Dludla P, Mabhida S, Benjeddou M, Louw J, February F. Pharmacogenomics of amlodipine and hydrochlorothiazide therapy and the quest for improved control of hypertension: a mini review. Heart Fail Rev. 2019. https://doi.org/10.1007/s10741-018-09765-y.
Ruffolo RR Jr, Boyle DA, Venuti RP, Lukas MA. Preclinical and clinical pharmacology of carvedilol. J Human Hypertension. 1993;7 Suppl 1:S2-15. PMID: 8487245.
Grassi G, Robles N, Seravalle G, Fici F. Lercanidipine in the management of hypertension: an update. J Pharmacol Pharmacother. 2018. https://doi.org/10.4103/jpp.jpp_34_17.
Yoon YM, Lee JH, Yun SP, et al. Tauroursodeoxycholic acid reduces ER stress by regulating of Akt-dependent cellular prion protein. Sci Rep. 2016. https://doi.org/10.1038/srep39838.
Kamiya T, Hara H, Adachi T. Effect of endoplasmic reticulum (ER) stress inducer thapsigargin on the expression of extracellular-superoxide dismutase in mouse 3T3-L1 adipocytes. J Clin Biochem Nutr. 2013. https://doi.org/10.3164/jcbn.12-46.
Baritaki S, Katsman A, Chatterjee D, et al. Regulation of tumor cell sensitivity to TRAIL-induced apoptosis by the metastatic suppressor Raf kinase inhibitor protein via Yin Yang 1 inhibition and death receptor 5 up-regulation. J Immunol. 2014. https://doi.org/10.4049/jimmunol.179.8.5441.