Development of a Predictive Equation for Modelling the Infiltration Process Using Gene Expression Programming

Springer Science and Business Media LLC - Tập 35 - Trang 1871-1888 - 2021
Tabasum Rasool1, A. Q. Dar1, M. A. Wani2
1Department of Civil Engineering, National Institute of Technology Srinagar, Hazratbal, Srinagar, India
2Research and Extension, HMAARI, Leh, India

Tóm tắt

In this study, the soft computing technique of Gene expression programming (GEP) has been employed to generate a predictive equation of infiltration rate (fp). Infiltration experiments were conducted at 124 different sites and soil samples were collected to assess various soil properties throughout the Himalayan lake catchment. Parameters determined from observed data using nonlinear-Levenberg Marquardt algorithm were substituted in Horton, Kostiakov and Philip infiltration models and fp were predicted. Using soil data generated by laboratory investigation of soil samples, the GEP model was developed. Training and testing of the GEP model was performed using 70% and 30% of data respectively. Performance of GEP developed functional relationship was evaluated by comparing predictions from it and aforementioned infiltration models with field observed fp, and by applying overall performance index (OPI) computed using Coefficient of Determination (R2), Nash–Sutcliffe Efficiency (ENS), Willmott’s Index of Agreement (W), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). Expression developed using GEP indicated feasibility of developed equation with ENS, R2, W, RMSE and MAE of 0.84, 0.84, 0.96, 1.9, and 0.8, respectively for training data-set and 0.84, 0.85, 0.95, 1.2, and 0.95, respectively for testing data-set. Comparative analysis revealed that though with a slightly higher OPI value (0.7–0.8), the performance of conventional models is better compared to the GEP model (0.66) but the GEP model having satisfactory performance may be used for fp prediction particularly in absence of observed data.

Tài liệu tham khảo