Phát triển phương pháp chiết xuất vi mô bằng dung môi supramolecular xanh có giới hạn tiếp cận nước để xác định cải thiện đáng kể nông sản với nhiều dạng phân cực trong mẫu nước và bột ngũ cốc

César Ricardo Teixeira Tarley1,2, Luciane Effting1, Ismael Rodrigues Amador1, Maikon Thiago do Nascimento3
1Department of Chemistry, State University of Londrina (UEL), Londrina, Brazil
2Department of Analytical Chemistry, National Institute of Science and Technology in Bioanalysis (INCTBio), State University of Campinas (UNICAMP, ), Institute of Chemistry, Campinas, Brazil
3Department of Food Science, University of Londrina (UEL), Londrina, Brazil

Tóm tắt

Một phương pháp mới dựa trên chiết xuất vi mô xanh (SUPRA) cho việc tập trung đồng thời bảy loại thuốc trừ sâu, bao gồm acetamiprid, azoxystrobin, bifenthrin, carbendazim, chlorpyrifos, imidacloprid và tebuconazole, trong các mẫu nước và bột ngũ cốc với định lượng tiếp theo bằng HPLC-DAD đã được phát triển. Phương pháp này sử dụng 113 µL 1-decanol làm chất chiết xuất amphiphilic và 500 µL tetrahydrofuran làm dung môi phân tán. Để thực hiện tối ưu hóa phương pháp, thiết kế 25 yếu tố và thiết kế Doehlert kết hợp với hàm mong muốn Derringer-Suich và phương pháp bề mặt phản hồi đã được sử dụng. Việc chiết xuất vi mô thuốc trừ sâu được thực hiện ở pH 6.3 với sự hiện diện của 5% NaCl (w/v), thời gian chiết xuất asist thấp (30 giây) và cho thấy các yếu tố tập trung cao (3.6–266.1) và giới hạn phát hiện thấp (8.98–29.92 µg L−1). Độ chính xác trong ngày (n = 10) và độ chính xác giữa các ngày (n = 10) được đánh giá dưới dạng phần trăm độ lệch chuẩn tương đối (%RSD) cho các nồng độ 50.0 và 200.0 µg L−1 dao động từ 1.7 đến 4.1%. Phương pháp đã được áp dụng thành công để xác định thuốc trừ sâu trong mẫu nước sông và hồ bằng cách sử dụng đường chuẩn ngoại. Xem xét tính chất của vật liệu với khả năng tiếp cận bị hạn chế của SUPRAs, phương pháp chiết xuất vi mô cũng đã được áp dụng để điều trị trực tiếp các mẫu rắn từ bột lúa mì, yến mạch và gạo. Các giá trị phục hồi cao trong khoảng từ 80–112% đã được thu được, chứng minh sự không có can thiệp khả dĩ từ các thành phần ma trận.

Từ khóa

#thuốc trừ sâu #chiết xuất vi mô #tiếp cận hạn chế #pha rắn #phân tích nước

Tài liệu tham khảo

Musarurwa H, Tavengwa NT (2021) Emerging green solvents and their applications during pesticide analysis in food and environmental samples. Talanta 223:121507. https://doi.org/10.1016/j.talanta.2020.121507 Rani L, Thapa K, Kanojia N, Sharma N, Singh S, Grewal AS, Srivastav AL, Kaushal J (2021) An extensive review on the consequences of chemical pesticides on human health and environment. J Clean Prod 283:124657. https://doi.org/10.1016/j.jclepro.2020.124657 FAO (2023) Pesticides use. https://www.fao.org/faostat/en/#data/RP/visualize ANVISA (2019) Programa de Análise de Resíduos de Agrotóxicos em Alimentos (PARA): relatório das amostras analisadas no período de 2017–2018. In: Programa de Análise de Resíduos de Agrotóxicos em Alimentos—PARA Plano Plurianual 2017–2020—Ciclo 2017/2018. http://portal.anvisa.gov.br/programa-de-analise-de-registro-de-agrotoxicos-para BRASIL (2021) Portaria GM/MS No 888, de 4 de maio de 2021. Portaria GM/MS No 888, de 4 de Maio de 2021. https://in.gov.br/en/web/dou/-/portaria-gm/ms-n-888-de-4-demaio-de-2021-318461562 Rasool S, Rasool T, Gani KM (2022) A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chem Eng J Adv 11:100301. https://doi.org/10.1016/j.ceja.2022.100301 Rubio S (2020) Twenty years of supramolecular solvents in sample preparation for chromatography: achievements and challenges ahead. Anal Bioanal Chem 6037–6058. https://doi.org/10.1007/s00216-020-02559-y Bordin AB, Minetto L, do Nascimento Filho I, Beal LL, Moura S (2017) Determination of pesticide residues in whole wheat flour using modified QuEChERS and LC-MS/MS. Food Anal Methods 10(1):1–9. https://doi.org/10.1007/s12161-016-0542-2 Chen R, Xue X, Wang G, Wang J (2021) Determination and dietary intake risk assessment of 14 pesticide residues in apples of China. Food Chem 351:129266. https://doi.org/10.1016/j.foodchem.2021.129266 Stringhini FM, Ribeiro LC, Rocha GI, Juliana JD, Zanella R, Prestes OD, Adaime MB (2021) Dilution of QuEChERS extracts without cleanup improves results in the UHPLC-MS/MS multiresidue analysis of pesticides in tomato. Food Anal Methods 14(8):1511–1523. https://doi.org/10.1007/s12161-020-01921-1 Rykowska I, Ziemblińska J, Nowak I (2018) Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: a review. J Mol Liq 259:319–339. https://doi.org/10.1016/j.molliq.2018.03.043 Avval MM, Khani R (2022) Eco-friendly and affordable trace quantification of riboflavin in biological and food samples using a supramolecular solvent based liquid–liquid microextraction. J Mol Liq 362:119725. https://doi.org/10.1016/j.molliq.2022.119725 Omar KA, Sadeghi R (2022) Physicochemical properties of deep eutectic solvents: a review. J Mol Liq 360:119524. https://doi.org/10.1016/j.molliq.2022.119524 Fouladlou S, Faraji H, Shahbaazi H, Moghimi A, Azizinezhad F (2021) Deep eutectic solvent-based continuous sample drop flow microextraction combined with electrothermal atomic absorption spectrometry for speciation and determination of chromium ions in aqueous samples. Microchem J 152:105834–105941. https://doi.org/10.1016/j.microc.2020.105834 Fouladlou S, Faraji H, Shahbaazi H, Moghimi A, Azizinezhad F (2022) An improved microextraction method based on continuous sample drop flows and solidification of switchable hydrophilic fatty acid for the speciation of chromium in aqueous samples. Int J Environ Anal Chem 102:911–922. https://doi.org/10.1080/03067319.2020.1727462 Deng H, Wang H, Liang M, Su X (2019) A novel approach based on supramolecular solvent microextraction and UPLC-Q-Orbitrap HRMS for simultaneous analysis of perfluorinated compounds and fluorine-containing pesticides in drinking and environmental water. Microchem J 151:104250. https://doi.org/10.1016/j.microc.2019.104250 Ballesteros-Gómez A, Lunar L, Sicilia MD, Rubio S (2019) Hyphenating supramolecular solvents and liquid chromatography: tips for efficient extraction and reliable determination of organics. Chromatographia 82(1):111–124. https://doi.org/10.1007/s10337-018-3614-1 Ballesteros-Gómez A, Rubio S (2012) Environment-responsive alkanol-based supramolecular solvents: characterization and potential as restricted access property and mixed-mode extractants. Anal Chem 84(1):342–349. https://doi.org/10.1021/ac2026207 Accioni F, García-Gómez D, Girela E, Rubio S (2018) SUPRAS extraction approach for matrix-independent determination of amphetamine-type stimulants by LC-MS/MS. Talanta 182:574–582. https://doi.org/10.1016/j.talanta.2018.02.039 Caballero-Casero N, Mihretu LD, Rubio S (2022) Interference-free method for determination of benzodiazepines in urine based on restricted-access supramolecular solvents and LC-MS-MS. J Anal Toxicol 46(3):285–294. https://doi.org/10.1093/jat/bkab023 Scheel GL, Tarley CRT (2017) Feasibility of supramolecular solvent-based microextraction for simultaneous preconcentration of herbicides from natural waters with posterior determination by HPLC-DAD. Microchem J 133:650–657. https://doi.org/10.1016/j.microc.2017.03.007 González-Rubio S, Ballesteros-Gómez A, García-Gómez D, Rubio S (2022) Double-headed amphiphile-based sponge droplets: synthesis, characterization and potential for the extraction of compounds over a wide polarity range. Talanta 239. https://doi.org/10.1016/j.talanta.2021.123108 Bezerra MA, Ferreira SLC, Novaes CG, Santos AMP, Valasques GS, Cerqueira UMF da M, Alves JPS (2019) Simultaneous optimization of multiple responses and its application in Analytical Chemistry: a review. Talanta 194(8): 941–959. https://doi.org/10.1016/j.talanta.2018.10.088 Scheel GL, Tarley CRT (2020) Simultaneous microextraction of carbendazim, fipronil and picoxystrobin in naturally and artificial occurring water bodies by water-induced supramolecular solvent and determination by HPLC-DAD. J Mol Liq 297:111897. https://doi.org/10.1016/j.molliq.2019.111897 Ferreira SLC, Dos Santos WNL, Quintella CM, Neto BB, Bosque-Sendra JM (2004) Doehlert matrix: a chemometric tool for analytical chemistry—review. Talanta 63(4):1061–1067. https://doi.org/10.1016/j.talanta.2004.01.015 Long GL, Winefordner JD (1983) Limit of detection: a closer look at the IUPAC definition. Anal Chem 55(7):712–724. https://doi.org/10.1021/ac00258a724 Thompson M, Ellison SLR, Wood R (2002) Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl Chem 74(5):835–855. https://doi.org/10.1351/pac200274050835 Tarley CRT, Corazza MZ, Somera BF, Segatelli (2015) Preparation of new ion-selective cross-linked poly(vinylimidazole-coethylene glycol dimethacrylate) using a double-imprinting process for the preconcentration of Pb2+ ions. J Colloid Interface Sci. 450: 254–263. https://doi.org/10.1016/j.jcis.2015.02.074 ICH (2022) International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human—Use ICH Harmonised Guideline—Validation of Analytical Procedures Q2(R2). https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-q2r2-validation-analytical-procedures-step-2b_en.pdf Moral A, Sicilia MD, Rubio S (2009) Determination of benzimidazolic fungicides in fruits and vegetables by supramolecular solvent-based microextraction/liquid chromatography/fluorescence detection. Anal Chim Acta 650(2):207–213. https://doi.org/10.1016/j.aca.2009.07.056 ANVISA (2022) Monografias de Agrotóxicos. Agência Nacional De Vigilância Sanitaria. https://www.gov.br/anvisa/pt-br/acessoainformacao/dadosabertos/informacoes-analiticas/monografias-de-agrotoxicos Roberts TR (1998) Metabolic pathways of agrochemicals part 1: herbicides and plant growth regulators, 1st edn. The Royal Society of Chemistry Roberts TR, Hutson DH (1999) Agrochemicals metabolic pathways of fungicides part 2: insecticides and fungicides, 1st edn. The Royal Society of Chemistry Beal A, Garcia De Almeida F, Moreira CAB, Santos IM, Curti SMM, Martins LD, Tarley CRT (2018) A new analytical method for lead determination in atmospheric particulate matter by a combination of ultrasound-assisted extraction and supramolecular solvent preconcentration. Anal Methods 10(30):3745–3753. https://doi.org/10.1039/c8ay01092g Negussie BT, Dube S, Nindi MM (2021) Multiclass pesticide residue analysis in fruit and vegetable samples by combining acetone-based salting-out assisted extraction with dispersive liquid-liquid microextraction. J Chem 2021:1–12. https://doi.org/10.1155/2021/6417093 Neto BB, Scarminio IS, Bruns RE (2001) Como Fazer Experimentos: Pesquisa e Desenvolvimento na Ciência e na Indústria, 2nd edn. E. Unicamp Rendoón A, Carton DG, Sot J, García-Pacios M, Montes LR, Valle M, Arrondo JLR, Goñi FM, Ruiz-Mirazo K (2012) Model systems of precursor cellular membranes : long-chain alcohols stabilize spontaneously formed oleic acid vesicles. Biophysis Soc 102:278–286. https://doi.org/10.1016/j.bpj.2011.12.026 Jovanov P, Guzsvány V, Lazić S, Franko M, Sakač M, Šarić L, Kos J (2015) Development of HPLC-DAD method for determination of neonicotinoids in honey. J Food Compos Anal 40:106–113. https://doi.org/10.1016/j.jfca.2014.12.021 Melo A, Aguiar A, Mansilha C, Pinho O, Ferreira IMPLVO (2012) Optimisation of a solid-phase microextraction/HPLC/Diode Array method for multiple pesticide screening in lettuce. Food Chem 130(4):1090–1097. https://doi.org/10.1016/j.foodchem.2011.07.137 Polati S, Bottaro M, Frascarolo P, Gosetti F, Gianotti V, Gennaro MC (2006) HPLC-UV and HPLC-MSn multiresidue determination of amidosulfuron, azimsulfuron, nicosulfuron, rimsulfuron, thifensulfuron methyl, tribenuron methyl and azoxystrobin in surface waters. Anal Chim Acta 579(2):146–151. https://doi.org/10.1016/j.aca.2006.07.034 Díaz-Álvarez M, Turiel E, Martín-Esteban A (2019) Molecularly imprinted polymer monolith containing magnetic nanoparticles for the stir-bar sorptive extraction of thiabendazole and carbendazim from orange samples. Anal Chim Acta 1045:117–122. https://doi.org/10.1016/j.aca.2018.09.001 Santos LFS, de Jesus RA, Costa JAS, Gouveia LGT, Mesquita ME, Navickiene S (2019) Evaluation of MCM-41 and MCM-48 mesoporous materials as sorbents in matrix solid phase dispersion method for the determination of pesticides in soursop fruit (Annona muricata). Inor Chem Comm 101:45–51. https://doi.org/10.1016/j.inoche.2019.01.013 Wang K, Xie X, Zhang Y, Huang Y, Zhou S, Zhang W, Lin Y, Fan H (2018) Combination of microwave-assisted extraction and ultrasonic-assisted dispersive liquid-liquid microextraction for separation and enrichment of pyrethroids residues in Litchi fruit prior to HPLC determination. Food Chem 240:1233–1242. https://doi.org/10.1016/j.foodchem.2017.08.061 Xiong J, Tang X, Zhou G, Guan Z, Wu L (2013) Dispersive solid phase extraction coupled with HPLC-UV for simultaneous determination of chlorpyrifos and 3,5,6-trichloro-2-pyridinol in soil samples. Anal Methods 5(2):536–540. https://doi.org/10.1039/c2ay25972a Gorji S, Biparva P, Bahram M, Nematzadeh G (2019) Rapid and direct microextraction of pesticide residues from rice and vegetable samples by supramolecular solvent in combination with chemometrical data processing. Food Anal Methods 12(2):394–408. https://doi.org/10.1007/s12161-018-1371-2 Zhao W, Zhao J, Zhao H, Cao Y, Liu W (2018) Supramolecular solvent-based vortex-mixed microextraction: determination of chiral triazole fungicide in beer samples. Chirality 30(3):302–309. https://doi.org/10.1002/chir.22798 Caballo C, Sicilia MD, Rubio S (2013) Stereoselective quantitation of mecoprop and dichlorprop in natural waters by supramolecular solvent-based microextraction, chiral liquid chromatography and tandem mass spectrometry. Anal Chim Acta 761:102–108. https://doi.org/10.1016/j.aca.2012.11.044 Pena-Pereira F, Wojnowski W, Tobiszewski M (2020) AGREE—Analytical GREEnness metric approach and software. Anal Chem 92(14):10076–10082. https://doi.org/10.1021/acs.analchem.0c01887 AOAC (2016) Guidelines for standard method performance requirements. AOAC International, Rockville, MD, USA