Development of X-ray Methods for Studying Protein Planar Systems on a Liquid Surface Using Synchrotron Radiation

Crystallography Reports - Tập 68 - Trang 97-103 - 2023
M. S. Folomeshkin1, A. E. Blagov2,1, A. S. Boikova1, Yu. A. Volkovsky2,1, Yu. A. Dyakova2,1, K. B. Ilina2,1, M. A. Marchenkova2,1, Yu. V. Pisarevsky2,1, P. A. Prosekov2, A. V. Rogachev1, A. Yu. Seregin2,1, M. V. Kovalchuk2,1,3
1National Research Centre “Kurchatov Institute”, Moscow, Russia
2Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”, Russian Academy of Sciences, Moscow, Russia
3St. Petersburg State University, St. Petersburg, Russia

Tóm tắt

The structure of Langmuir lysozyme films on a liquid surface, formed from crystallization solutions with addition of metal chlorides as a precipitant, have been investigated. The thicknesses and densities of the films were determined using the X-ray reflectivity technique, and the concentration distribution profiles of the sulfur atoms present in protein molecules, as well as precipitant ions in the subphase surface region, have been obtained by the X-ray standing waves technique. Based on the experimental results, the dependence of the film structure on the precipitant used, as well as some specific features of application of X-ray reflectivity and X-ray standing waves techniques in the study of Langmuir films of globular proteins on a liquid surface, are analyzed.

Tài liệu tham khảo

J. Fraden, Handbook of Modern Sensors (Springer, Cham, 2016). S. H. Mir, L. A. Nagahara, T. Thundat, et al., J. Electrochem. Soc. 165 (8), B3137 (2018). https://doi.org/10.1149/2.0191808jes R. Liu, Materials 7 (4), 2747 (2014). https://doi.org/10.3390/ma7042747 M. V. Kovalchuk, A. S. Boikova, Yu. A. D’yakova, et al., Crystallogr. Rep. 62 (4), 632 (2017). https://doi.org/10.1134/S1063774517040125 M. Marchenkova, A. Boikova, Y. Dyakova, et al., Acta Crystallogr. A 70, C1182 (2017). https://doi.org/10.1107/S2053273317083929 A. S. Boikova, Yu. A. D’yakova, K. B. Il’ina, et al., Crystallogr. Rep. 63 (5), 719 (2018). https://doi.org/10.1134/S1063774518050061 M. V. Kovalchuk, A. S. Boikova, Y. A. Dyakova, et al., Thin Solid Films 677, 13 (2019). https://doi.org/10.1016/j.tsf.2019.02.051 M. S. Folomeshkin, A. S. Boikova, Yu. A. Volkovskii, et al., Crystallogr. Rep. 65 (6), 827 (2020). https://doi.org/10.1134/S1063774520060152 M. S. Folomeshkin, M. A. Marchenkova, A. S. Boikova, et al., J. Phys.: Conf. Ser. 1560, 012033 (2020). https://doi.org/10.1088/1742-6596/1560/1/012033 A. Ducruix, J. P. Guilloteau, M. Riès-Kautt, et al., J. Cryst. Growth 168, 28 (1996). https://doi.org/10.1016/0022-0248(96)00359-4 M. A. Marchenkova, V. V. Volkov, A. E. Blagov, et al., Crystallogr. Rep. 61 (1), 5 (2016). https://doi.org/10.1134/S1063774516010144 M. V. Kovalchuk, A. E. Blagov, Y. A. Dyakova, et al., Cryst. Growth Des. 16 (4), 1792 (2016). https://doi.org/10.1021/acs.cgd.5b01662 Y. A. Dyakova, K. B. Il’ina, and P. V. Konarev, Crystallogr. Rep. 62 (3), 364 (2017). https://doi.org/10.1134/S1063774517030051 A. S. Boikova, Y. A. Dyakova, K. B. Il’ina, et al., Crystallogr. Rep. 62 (6), 837 (2017). https://doi.org/10.1134/S1063774517060074 A. S. Boikova, Y. A. Dyakova, K. B. Ilina, et al., Acta Crystallogr. D 73, 591 (2017). https://doi.org/10.1107/S2059798317007422 Yu. V. Kordonskaya, V. I. Timofeev, Y. A. Dyakova, et al., Crystallogr. Rep. 63 (6), 947 (2018). https://doi.org/10.1134/S1063774518060196 M. V. Kovalchuk, A. S. Boikova, Y. A. Dyakova, et al., Crystallogr. Rep. 63 (6), 865 (2018). https://doi.org/10.1134/S1063774518060068 Y. A. Dyakova, A. S. Boikova, K. B. Il’ina, et al., Crystallogr. Rep. 64 (1), 11 (2019). https://doi.org/10.1134/S1063774519010061 M. V. Kovalchuk, A. S. Boikova, Y. A. Dyakova, et al., J. Biomol. Struct. Dyn 37 (12), 3058 (2019). https://doi.org/10.1080/07391102.2018.1507839 M. A. Marchenkova, P. V. Konarev, T. V. Rakitina, et al., J. Biomol. Struct. Dyn. 38 (10), 2939 (2020). https://doi.org/10.1080/07391102.2019.1649195 Y. V. Kordonskaya, M. A. Marchenkova, V. I. Timofeev, et al., J. Biomol. Struct. Dyn. 39 (18), 7223 (2020). https://doi.org/10.1080/07391102.2020.1803138 M. A. Marchenkova, P. V. Konarev, A. S. Boikova, et al., Crystallogr. Rep. 66 (5), 751 (2021). https://doi.org/10.1134/S1063774521050138 V. G. Kohn, Crystallogr. Rep. 51 (5), 936 (2006). https://doi.org/10.1134/S1063774506060034 L. G. Parratt, Phys. Rev. 95 (2), 359 (1954). https://doi.org/10.1103/PhysRev.95.359 M. V. Kovalchuk and V. G. Kohn, Usp. Fiz. Nauk 149 (1), 69 (1986). M. J. Bedzyk, G. M. Bommarito, and J. S. Schildkraut, Phys. Rev. Lett. 69 (12), 1376 (1992). https://doi.org/10.1103/PhysRevLett.62.1376 S. I. Zheludeva, M. V. Kovalchuk, N. N. Novikova, et al., J. Appl. Crystallogr. 30, 833 (1997). https://doi.org/10.1107/S0021889897001167 B. M. Murphy, M. Greve, B. Runge, et al, J. Synchr. Radiat. 21, 45 (2014). https://doi.org/10.1107/S1600577513026192 PyMca. http://pymca.sourceforge.net/ W. Press, S. Teukolsky, W. Vatterling, et al., Numerical Recipes, The Art of Scientific Computing (Cambridge Univ. Press, Cambridge, 2007). M. A. Marchenkova, I. P. Kuranova, and V. I. Timofeev, J. Biomol. Struct. Dyn. 38 (17), 5159 (2020). https://doi.org/10.1080/07391102.2019.1696706