Phát triển phương pháp quang phổ phản xạ hồng ngoại gần (NIRS) cho các tính trạng liên quan đến chuyển đổi ethanol từ cỏ Napier (Pennisetum purpureum Schum.) có biến thiên gen

BioEnergy Research - Tập 12 - Trang 34-42 - 2018
William F. Anderson1, Bruce S. Dien2, Steven D. Masterson3, Robert B. Mitchell3
1Crop Genetics and Breeding Research Unit, Tifton, USA
2National Center for Agricultural Utilization Research, Peoria, USA
3Wheat, Sorghum and Forage Research, 251 Filley Hall/Food Ind. UNL, East Campus, University of Nebraska, Lincoln, USA

Tóm tắt

Cỏ Napier (Pennisetum purpureum Schum.) là một trong những nguồn nguyên liệu cho sản xuất sinh học và biofuel có năng suất cao nhất ở các khu vực bán nhiệt đới của Mỹ và thế giới. Ba mươi giống cỏ Napier với sự đa dạng di truyền đã được chọn từ một vườn ươm nguồn gen ở Tifton, GA và được phân tích về sợi, tro, nồng độ nitơ (N) và khả năng chuyển đổi sinh hóa thành ethanol. Một phương pháp hiệu chuẩn quang phổ phản xạ hồng ngoại gần (NIRS) đã được phát triển từ các mẫu vật này để dự đoán sản lượng ethanol, xylans, nồng độ N và tro bằng cách tách rời lá và thân và tương quan với các phân tích hóa học ướt. Sự đa dạng cao của mẫu vật từ các giống cây thấp với khả năng tiêu hóa lá và thân tốt đến các giống cỏ Napier cao hơn và năng suất hơn đã dẫn đến các tương quan cao với các kết quả dự đoán cho khả năng tiêu hóa chất khô trong ống nghiệm (r2 = 0.93), sợi tẩy trung tính (r2 = 0.83), sợi tẩy acid (r2 = 0.95), ethanol (r2 = 0.90), nitơ (r2 = 0.99), và tro (r2 = 0.98). Thông tin này sẽ cho phép đánh giá nhanh hơn về sinh khối cỏ Napier cho các ngành công nghiệp hoặc cho các nhà di truyền học.

Từ khóa

#Cỏ Napier #Pennisetum purpureum #quang phổ phản xạ hồng ngoại gần #chuyển đổi ethanol #di truyền học

Tài liệu tham khảo

Abrams SM, Shenk JS, Westerhaus MO, Barton FE (1987) Determination of forage quality by near infrared reflectance spectroscopy: efficiency of broad based calibration equations. J Dairy Sci 70:806–813 Anderson WF, Akin DE (2008) Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J Ind Microbiol Biotechnol 35:355–366 Anderson WF, Peterson JD, Akin DE, Morrison WH III (2005) Enzyme pretreatment of grass lignocellulose for potential high-value co-products and an improved fermentable substrate. Appl Biochem Biotechnol 121-124:303–310 Anderson WF, Dien BS, Brandon SK, Peterson JD (2008) Assessment of Bermudagrass and bunch grasses as feedstocks for conversion to ethanol. Appl Biochem Biotechnol 145:13–21 Anderson WF, Dien BS, Jung HG, Vogel K, Weimer PJ (2010) Effects of forage quality and cell wall constituents of Bermudagrass on biochemical conversion to ethanol. Bioenerg Res 3:225–237 Bhandari AP, Sukanya DH, Ramesh CR (2006) Application of isozyme data in fingerprinting Napiergrass (Pennisetum purpureum Schum.) for germplasm management. Genet Resour Crop Evol 53:253–264 Bouton J (2002) Bioenergy crop breeding and production research in the southeast: final report for 1996 to 2001; in: bioenergy crop breeding and production research in the southeast, ORNL/SUB-02-19XSV810C/01 Brandon SK, Sharma LN, Hawkins GM, Anderson WF, Chambliss CK, Peterson JD (2011) Ethanol and co-product generation from pressurized batch hot water pretreated T85 Bermudagrass and Merkeron napiergrass using recombinant Escherichia coli as biocatalyst. Biomass Bioenergy 35:3667–3673 Burton GW (1989) Registration of “Merkeron” napiergrass. Crop Sci 29:1327 Casler MD, Jung HJG (2006) Relationships of fibre, lignin, and phenolics to in vitro fibre digestibility in three perennial grasses. Ani Feed Sci Technol 125:151–161 de Queiroz Filho JL, da Silva DS, do Nascimento IS (2000) Dry matter production and quality of elephantgrass (Pennisetum purpureum Schum.) cultivar Roxo at different cutting ages. R Bras Zootec 29:69–74 Hanna WW, Monson W (1988) Registration of dwarf Tift N75 napiergrass germplasm. Crop Sci 28:870 Hanna WW, Chaparro CJ, Mathews BW, Burns JC, Sollenberger LE, Carpenter JR (2004) Perennial Pennisetums. In: Moser LE, Burson BL, and Sollenberger LE (ed.) Warm-season (C4) grasses. Agronomy 45: 503–520 Harris K, Anderson WF, Malik R (2010) Genetic relationships among napiergrass (Pennisetum purpureum Schum.) nursery accessions using AFLP markers. Plant Genet Resour: Charact Utilization 8:63–70 Hou S, Li L (2011) Rapid characterization of woody biomass digestibility and chemical composition using near-infrared spectroscopy. J Integr Plant Biol 53:166–175 Huang J, Xia T, Li A, Yu B, Li Q, Tu Y, Zhang W, Yi Z, Peng L (2012) A rapid and consistent near infrared spectroscopic assay for biomass enzymatic digestibility upon various physical and chemical pretreatments in Miscanthus. Bioresour Technol 121:274–281 Jung HG, Allen MS (1995) Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. J Animal Sci 73:2774–2790 Kandel R, Singh HP, Singh BP, Harris-Shultz KR, Anderson WF (2015) Assessment of genetic diversity in napiergrass (Pennisetum purpureum Schum.) using microsatellite markers, single-nucleotide polymorphorism, and insertion-deletion markers from pearl millet (Pennisetum glaucum [L.] R. Br.). Plant Mol Bio Rep 33:265–272. https://doi.org/10.1007/s11105-015-0918-2 Knoll J, Anderson W, Strickland T, Hubbard R, Malik R (2012) Low-input production of biomass from perennial grasses in the coastal plain of Georgia, USA. BioEnergy Res 5(1):206–214. https://doi.org/10.1007/s12155-011-9122-x Lorenzana RE, Lewis MF, Jung H-JG, Bernardo R (2010) Quantitative trait loci and trait correlations for maize Stover cell wall composition and glucose release for cellulosic ethanol. Crop Sci 50:541–555 Lowe AJ, Thorpe W, Teake A, Hanson J (2003) Characterization of germplasm accession of napiergrass (Pennisetum purpureum and P. purpureum x P. glaucum hybrids) and comparison with farm clones using RAPD. Genet Resour Crop Evol 50:121–132 Marten GC, Barnes RF (1980) Prediction of energy digestibility of forages with in vitro rumen fermentation and fungal enzyme systems. In: Pigden WJ, Blach CC, Graham M (eds) Proc. Int. standardization of analytical methodology for feeds, Ottawa, Canada. 12–14 Mar. 1979. Ind. Development Ctr. 134e. Ottawa, Canada, pp 67–71 Scholl AL, Menegol D, Pitarelo AP, Fontana RC, Filho AZ, Ramos LP, Dillon AJP, Camassola M (2015) Ethanol production from sugars obtained during enzymatic hydrolysis of elephant grass (Pennisetum purpureum, Schum.) pretreated by steam explosion. Bioresour Technol 192:228–237 Shenk JS, Westerhaus MO (1991) Population definition, sample selection, and calibration procedures for near-infrared reflectance spectroscopy. Crop Sci 31:469–474 Sotomayor-Rios A, Torres-Cardona S, Quiles-Belen A, Hanna W (1997) Agronomic comparison of dwarf and tall Napiergrass in Puerto Rico. J Agric Univ Puerto Rico 81:9–18 Teymouri F, Lauerano-Perez L, Alizadeh H, Dale BE (2005) Optimization of ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn Stover. Bioresour Technol 96:2014–2018 Tilley JM, Terry RA (1963) A two-stage technique for the in vitro digestion of forage crops. J Brit Grassl Soc 18:104–111 Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597 Vogel KP, Pederson JF, Masterson SD, Toy JJ (1999) Evaluation of a filter bag system for NDF, ADF, and IVDMD forage analysis. Crop Sci 39:276–279 Vogel KP, Dien BS, Jung HG, Casler MD, Masterson SD, Mitchell RB (2010) Quantifying actual and theoretical ethanol yields for switchgrass strains using NIRS analyses. BioEnergy Res 4:96–110 Vogel KP, Mitchell RB, Sarath G, Jung HG, Dien BS, Casler MD (2013) Switchgrass biomass composition altered by six generations of divergent breeding for digestibility. Crop Sci 53:853–862 Wanjala BW, Obonyo M, Wachira FN, Muchugi A, Mulaa M, Harvey J, Hanson J (2013) Genetic diversity in Napier grass (Pennisetum purpureum) cultivars: implications for breeding and conservation. AoB Plants 5:plt022. https://doi.org/10.1093/aobpla/plt022 Westerhaus M, Workman J, Reeves JB III, Mark H. (2004) Quantitative analysis. In: Roberts CA, Workman J. Jr, Reeves JB (eds) Near-infrared spectroscopy in agriculture. Agron. Monog. 44. ASA, CSSA, and SSSA, Madison, WI, p 133–174 Woodard KR, Prine GM (1993) Dry-matter accumulation of elephantgrass, energycane, and elephantmillet in a subtropical climate. Crop Sci 33:818–824 Yamashita Y, Shono M, Sasaki C, Nakamura Y (2010) Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohyd Polym 79:914–920 Yasuda M, Ishii Y, Ohta K (2015) Napier grass (Pennisetum purpureum Schumach) as raw material for bioethanol production: pretreatment, saccharification, and fermentation. Biotechnol Bioprocess Eng 19:943–950 Yasuda M, Takeo K, Nagai H, Uto T, Yui T, Matsumoto T, Ishii Y, Ohta K (2013) Enhancement of ethanol production from napiergrass (Pennisetum purpureum Schmach) by a low-moisture anhydrous ammonia pretreatment. J Sustain Bioenergy Sys 3:179–185