Development of Eu3+-doped phosphate glass for red luminescent solid-state optical devices

Journal of Luminescence - Tập 227 - Trang 117564 - 2020
P. Aryal1, H.J. Kim1, A. Khan1, S. Saha1, S.J. Kang2, S. Kothan3, Y. Yamsuk4,5, J. Kaewkhao4,5
1Department of Physics, Kyungpook National University, Daegu, 41566, South Korea
2Collage of Liberal Arts, Semyung University, Jechon, 27136, South Korea
3Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
4Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000, Thailand
5Physics Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand

Tài liệu tham khảo

Pugliese, 2016, Concentration quenching in an Er-doped phosphate glass for compact optical lasers and amplifiers, J. Alloys Compd., 657, 678, 10.1016/j.jallcom.2015.10.126 Karlsson, 2002, Development and characterization of Yb-Er laser glass for high average power laser diode pumping, Appl. Phys. B Laser Optic., 75, 41, 10.1007/s00340-002-0950-4 Boetti, 2017, Highly doped phosphate glass fibers for compact lasers and amplifiers: a review, Appl. Sci., 7, 10.3390/app7121295 Kalpana, 2015, Influence of Al3+ ions on luminescence efficiency of Eu3+ ions in barium boro-phosphate glasses, J. Non-Cryst. Solids, 419, 75, 10.1016/j.jnoncrysol.2015.03.033 Parchur, 2012, Behaviour of electric and magnetic dipole transitions of Eu3+, 5D0→7F0 and Eu-O charge transfer band in Li+ co-doped YPO4:Eu3+, RSC Adv., 2, 10859, 10.1039/c2ra22144f Morassuti, 2018, Eu3+-doped alumino-phosphate glass for ratiometric thermometer based on the excited state absorption, J. Lumin., 193, 39, 10.1016/j.jlumin.2017.09.001 Ehrt, 1991, Glass for high performance optics and laser technology, J. Non-Cryst. Solids, 129, 19, 10.1016/0022-3093(91)90076-I Walsh, 2006, 403 Stokowski, 1980, Optical and lasing properties of fluorophosphate glass, J. Non-Cryst. Solids, 40, 481, 10.1016/0022-3093(80)90123-4 Ćirić, 2020, Judd-Ofelt parametrization from emission spectra : the case study of the Eu3+, 5D1 emitting level, Chem. Phys., 528, 110513, 10.1016/j.chemphys.2019.110513 Dejneka, 1995, Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses, J. Lumin., 65, 227, 10.1016/0022-2313(95)00073-9 Abdel-Baki, 2011, Role of oxygen on the optical properties of borate glass doped with ZnO, J. Solid State Chem., 184, 2762, 10.1016/j.jssc.2011.08.015 Ramesh, 1997, Formation of Ln-Si-Al-O-N glasses and their properties, J. Eur. Ceram. Soc., 17, 1933, 10.1016/S0955-2219(97)00057-5 Hayden, 1990, Effect of composition on the thermal, mechanical, and optical properties of phosphate laser glasses, High-Power Solid State Lasers AndApplications, 1277, 121, 10.1117/12.20590 Tver’yanovich, 2003, Concentration quenching of luminescence of rare-earth ions in chalcogenide glasses, Glas, Phys. Chem., 29, 166 Chanthima, 2019, Effect of alkali oxides on luminescence properties of Eu3+-doped aluminium phosphate glasses, Mater. Today Proc., 17, 1906, 10.1016/j.matpr.2019.06.229 Zhang, 2019, The position shifting of charge transfer band in Eu3+-doped Re2O3 phosphors, Chem. Phys. Lett., 731, 136611, 10.1016/j.cplett.2019.136611 Binnemans, 1997, Optical absorption spectra of Eu3+ in Y3Ga5O12 (YGG), J. Phys. Condens. Matter, 9, 1637, 10.1088/0953-8984/9/7/025 Layne, 1977, Multiphonon relaxation of rare-earth ions in oxide glasses, Phys. Rev. B, 16, 10, 10.1103/PhysRevB.16.10 Giorgio, 2008, Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: a comparative study, J. Appl. Phys., 103, 1 Van Deun, 1998, Optical properties of Eu3+-doped fluorophosphate glasses, J. Phys. Condens. Matter, 10, 7231, 10.1088/0953-8984/10/32/014 Ebendorff-heidepriem, 1996, vol. 208, 205 Li, 2005, Structural aspects of Judd-Ofelt oscillator strength parameters: relationship between Nd dissolution and its local environments in borosilicate glasess, Phys. Chem. Glasses, 46, 412 Caenall, 1968, Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+, J. Chem. Phys., 49, 4450, 10.1063/1.1669896 Kesavulu, 2013, Thermal, vibrational and optical properties of Eu3+-doped lead fluorophosphate glasses for red laser applications, Mater. Chem. Phys., 141, 903, 10.1016/j.matchemphys.2013.06.021 Aryal, 2018, Optical and luminescence characteristics of Eu3+-doped B2O3:SiO2:Y2O3:CaO glasses for visible red laser and scintillation material applications, J. Rare Earths, 36, 482, 10.1016/j.jre.2017.09.017 Jha, 2019, Influence of modifier oxides on spectroscopic properties of Eu3+ doped oxy-fluoro tellurophosphate glasses for visible photonic applications, J. Alloys Compd., 789, 622, 10.1016/j.jallcom.2019.02.277 Linganna, 2012, Optical properties of Eu3+ ions in phosphate glasses, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 97, 788, 10.1016/j.saa.2012.07.031 Vukovi, 2015, vols. 1–8 Dai, 1991, Measurement of stimulated emission cross section and fluorescence branching ratio for Nd3+ in sodium-β″ alumina, Appl. Optic., 30, 4330, 10.1364/AO.30.004330 De, 2019, Enhancement of 5D0→7F2 red emission of Eu3+ incorporated in lead sodium phosphate glass matrix, Phys. B Condens. Matter, 556, 131, 10.1016/j.physb.2018.12.020 Babu, 2007, Optical absorption and photoluminescence studies of Eu3+-doped phosphate and fluorophosphate glasses, J. Lumin., 126, 109, 10.1016/j.jlumin.2006.05.010 Manasa, 2016, Luminescence and phonon side band analysis of Eu3+-doped lead fluorosilicate glasses, Opt. Mater., 62, 139, 10.1016/j.optmat.2016.09.006 Krishna Reddy, 2019, Enhancement of the red emission of Eu3+ by Bi3+ sensitizers in yttrium alumino bismuth borosilicate glasses, J. Mol. Struct., 1176, 133, 10.1016/j.molstruc.2018.08.057 Menzel, 2001, 630