Development of Cu2+ substituted Ni–Zn ferrite nano-particles and their high-temperature semiconductor behaviour
Tài liệu tham khảo
Gabal, 2014, Structural and magnetic properties of Ni1-xZnx Fe2O4 nano-crystalline ferrites prepared via novel chitosan method, J. Mol. Struct., 1063, 269, 10.1016/j.molstruc.2014.01.070
Gubbala, 2004, Magnetic properties of nanocrystalline Ni–Zn, Zn–Mn, and Ni–Mn ferrites synthesized by reverse micelle technique, Phys. B Condens. Matter, 348, 317, 10.1016/j.physb.2003.12.017
Murthy, 1962, 198
Ghasemi, 2014, Structural and magnetic evaluation of substituted NiZnFe2O4 particles synthesized by conventional sol–gel method, Ceram. Int., 40, 2825, 10.1016/j.ceramint.2013.10.031
Liu, 2015, Photoluminescence of rare earth ions coactivated Ca9Y(VO4)7 with cold, natural and warm white emission, Mater. Chem. Phys., 158, 18, 10.1016/j.matchemphys.2015.03.029
Gabal, 2010, Structural, magnetic and electrical properties of Ga-substituted NiCuZn nanocrystalline ferrite, Ceram. Int., 36, 1339, 10.1016/j.ceramint.2010.01.021
Madake, 2021, Spray deposited multimetal Cu-Ni-Zn ferrite for gas sensing application, Sensor Actuator Phys., 331, 112919, 10.1016/j.sna.2021.112919
Aravind, 2015, Electrical transport properties of nano crystalline Li–Ni ferrites, J. Materiomics, 1, 348, 10.1016/j.jmat.2015.09.003
Galagali, 2018, Electrical and magnetic properties of Mg1–xCdxFe2O4 ferrites (x = 0.2, 0.4, 0.6, 0.8), Int. J. Self-Propag. High-Temp. Synth., 27, 107, 10.3103/S1061386218020073
Vadivel, 2014, Synthesis, structural, dielectric, magnetic and optical properties of Cr substituted CoFe2O4 nanoparticles by co-precipitation method, J. Magn. Magn Mater., 362, 122, 10.1016/j.jmmm.2014.03.016
Panda, 2016, Effect of Cr3+ substitution on electric and magnetic properties of cobalt ferrite nanoparticles, J. Alloys Compd., 669, 19, 10.1016/j.jallcom.2016.01.256
Kumar, 2018, Study of magnetic properties of NiZnCu ferrite synthesized by Pechini method and solid-state reactions, J. Magn. Magn Mater., 8
Yang, 2004, Si-Ca species modificaton and microwave sintering for Ni-Zn ferrite, J. Magn. Magn Mater., 284, 220, 10.1016/j.jmmm.2004.06.040
LaConte, 2005, Magnetic nanoparticle probes, Mater. Today, 8, 32, 10.1016/S1369-7021(05)00893-X
Amiri, 2019, Magnetic nanocarriers: evolution of spinel ferrites for medical applications, Adv. Colloid Interface Sci., 265, 29, 10.1016/j.cis.2019.01.003
Shobana, 2021, Nanoferrites in biosensors – a review, Mater. Sci. Eng. B, 272, 115344, 10.1016/j.mseb.2021.115344
Taneja, 2021, Influence of bismuth doping on structural, electrical and dielectric properties of Ni–Zn nanoferrites, J. Alloys Compd., 859, 157760, 10.1016/j.jallcom.2020.157760
Mahesh Kumar, 2019, Investigations of surface spin canting in Ni-Zn nanoferrite and its development as magnetic core for microwave applications, J. Magn. Magn Mater., 471, 262, 10.1016/j.jmmm.2018.09.060
Desai, 2021, Effect of Co substitution on structural and magnetic properties of Ni0.6Zn0.4Fe2O4 nanoferrite, Mater. Today Proc., 46, 2261, 10.1016/j.matpr.2021.03.590
Naveena, 2021, Low-temperature magnetic properties of erbium doped bismuth nano-ferrites, J. Mater. Sci. Mater. Electron., 32, 18224, 10.1007/s10854-021-06365-9
Maramu, 2021, Crystal chemistry, Rietveld analysis, magnetic and microwave properties of Cu-doped strontium hexaferrites, J. Mater. Sci. Mater. Electron., 32, 10376, 10.1007/s10854-021-05694-z
Venkatesh, 2021, FTIR, optical, electrical and magnetic properties of Sm3+ doped Mg nano ferrites, Biointerface Res. Appl. Chem., 11, 15037, 10.33263/BRIAC116.1503715050
Sumalatha, 2022, Eco-friendly synthesis, TEM and magnetic properties of Co-Er nano-ferrites, Biointerface Res. Appl. Chem., 12, 910
Kaur, 2021, Review paper on nickel-zinc nano ferrite, Mater. Today Proc., 37, 3082, 10.1016/j.matpr.2020.09.016
Akhtar, 2021, Physical, structural, conductive and magneto-optical properties of rare earths (Yb, Gd) doped Ni–Zn spinel nanoferrites for data and energy storage devices, Ceram. Int., 47, 11878, 10.1016/j.ceramint.2021.01.028
Sjögren, 1997, Crystal size and properties of superparamagnetic iron oxide (SPIO) particles, Magn. Reson. Imaging, 15, 55, 10.1016/S0730-725X(96)00335-9
Lee, 2005, Large -scalesynthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions, Adv. Funct. Mater., 15, 503, 10.1002/adfm.200400187
Chung, 2004, Biological sensors based on Brownian relaxation of magnetic nanoparticles, Appl. Phys. Lett., 85, 2971, 10.1063/1.1801687
Grossman, 2004, Detection of bacteria in suspension by using a superconducting quantum interference device, Proc. Natl. Acad. Sci. Unit. States Am., 101, 129, 10.1073/pnas.0307128101
Nayeem, 2017, Effect of Zn+2 doping on structural, dielectric and electrical properties of cobalt ferrite prepared by auto combustion method, Mater. Today Proc., 4, 12138, 10.1016/j.matpr.2017.09.142
Chakradhary, 2019, Design synthesis and testing of high coercivity cobalt doped nickel ferrite nanoparticles for magnetic applications, J. Magn. Magn Mater., 469, 674, 10.1016/j.jmmm.2018.09.021
El Foulani, 2019, Effect of surfactants on the optical and magnetic properties of cobalt-zinc ferrite Co0.5Zn0.5Fe2O4, J. Alloys Compd., 774, 1250, 10.1016/j.jallcom.2018.09.393
Pradhan, 2005, Microstructure characterization and cation distribution of nanocrystalline magnesium ferrite prepared by ball milling, Mater. Chem. Phys., 93, 224, 10.1016/j.matchemphys.2005.03.017
Venkatesh, 2017, Effect of sintering temperature on microstructural and impedence spectroscopic properties of Ni0.5Zn0.5Fe2O4 nano ferrite, J. Supercond. Nov. Magnetism, 1859
Yang, 1996, Preparation of ultrafine YBa2Cu3O7-x superconductor powders by the Poly (vinyl alcohol)-Assisted sol-gel method, Ind. Eng. Chem. Res., 35, 4296, 10.1021/ie950527y
Harun-Or-Rashid, 2021, Effect of sintering temperature on the structural, morphological, electrical, and magnetic properties of Ni–Cu–Zn and Ni–Cu–Zn–Sc ferrites, J. Mater. Sci. Mater. Electron., 32, 2505, 10.1007/s10854-020-05018-7
Elain Hajlaoui, 2019, Conductivity and giant permittivity study of Zn0.5Ni0.5Fe2O4 spinel ferrite as a function of frequency and temperature, RSC Adv., 9, 32395, 10.1039/C9RA06589J
Galal, 2021, Synthesis of nanosized nickel zinc ferrite using electric arc furnace dust and ferrous pickle liquor, Sci. Rep., 11, 20170, 10.1038/s41598-021-99697-9
Sharma, 2021, Investigation of dielectric, electrical and optical properties of copper substituted Mn-Zn nanoferrites, J. Mater. Sci. Mater. Electron., 32, 313, 10.1007/s10854-020-04782-w
Hari Kumar, 2014, Synthesis and structural characterization of Cu substituted Ni-Zn nano-ferrites prepared by citrate-gel auto combustion technique, IJERA, 4, 137
HariKumar, 2015, FTIR studies and dielectric properties of Cu substituted nano crystalline nickel-zinc, IOSR-JAP, 7, 79
Sharma, 2016, Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via Co-precipitation route, J. Alloys Compd., 684, 569, 10.1016/j.jallcom.2016.05.200
Gottstein, 2001, Metal forming (cold), Sci. Technol., 2, 5394
Khalid Hossain, 2008, Influence of natural dye adsorption on the structural, morphological and optical properties of TiO2 based photoanode of dye-sensitized solar cell, Mater. Sci. Pol., 36, 93, 10.1515/msp-2017-0090
Verwey, 1939, Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures, Nature, 144, 327, 10.1038/144327b0
Masindi, 2021, Co-treatment of acid mine drainage and municipal wastewater effluents: emphasis on the fate and partitioning of chemical contaminants, Materials, 421, 126677
Verwey, 1936, Cation arrangement in a few oxides with crystal structures of the spinel type, Recl. Des. Trav. Chim. Des. Pays-Bas., 55, 531, 10.1002/recl.19360550608
Lakshman, 2005, Electric and dielectric study of zinc substituted cobalt nano ferrites prepared by solution combustion method, J. Phys. D Appl. Phys., 38, 673, 10.1088/0022-3727/38/5/002
Raddaoui, 2021, Hopping conduction mechanism and impedance spectroscopy analyses of La0.70Sr0.25Na0.05Mn0.70Ti0.30O3 ceramic, J. Mater. Sci. Mater. Electron., 32, 16113, 10.1007/s10854-021-06160-6
Bammannavar, 2007, Preparation, characterization and physical properties of Mg-Zn ferrites, Indian J. Eng. Mater. Sci., 14, 381
Anil Babu, 2021, Structural and electrical studies of excessively Sm2O3 substituted soft PZT nanoceramics, Ceram. Int., 47, 31294, 10.1016/j.ceramint.2021.08.002
Thorat, 2020, Co2+ substituted spinel MgCuZn ferrimagnetic oxide a highly versatile electromagnetic material via a facile molten salt route, Nanomaterials, 10, 23, 10.3390/nano10122333
Lakhani, 2011, Effect of Al3+ substitution on the transport properties of copper ferrite, J. Phys. D Appl. Phys., 44, 245403, 10.1088/0022-3727/44/24/245403
El-shabasy, 1997, DC electrical properties of ZnNi ferrite, J. Magn. Magn Mater., 172, 188, 10.1016/S0304-8853(97)00014-0
Almessiere, 2020, Impact of Eu3+ ion substitution on structural, magnetic and microwave traits of Ni–Cu–Zn spinel ferrites, Ceram. Int., 46, 11124, 10.1016/j.ceramint.2020.01.132
Gabal, 2010, A study on Cu substituted Ni–Cu–Zn ferrites synthesized using egg-white, J. Alloys Compd., 492, 411, 10.1016/j.jallcom.2009.11.124
Almessiere, 2021, Correlation between chemical composition, electrical, magnetic and microwave properties in Dy-substituted Ni-Cu-Zn ferrites, Mater. Sci. Eng. B., 270, 115202, 10.1016/j.mseb.2021.115202
Humbe, 2020, Cation distribution, magnetic and hyperfine interaction studies of Ni–Zn spinel ferrites: role of Jahn Teller ion (Cu2+) substitution, Mater. Adv., 1, 880, 10.1039/D0MA00251H
Das, 2020, The crystallographic, magnetic, and electrical properties of Gd3+-substituted Ni–Cu–Zn mixed ferrites, J. Phys. Chem. Solid., 142, 109433, 10.1016/j.jpcs.2020.109433
Patange, 2011, Electrical and switching properties of NiAlxFe2−xO4 ferrites synthesized by chemical method, Phys. B, 406, 663, 10.1016/j.physb.2010.11.081
Willander, 2003, Silicon-germanium strained layers and heterostructures, Semi Conductor Semi Met. Ser., 74, 322