Phát triển các đối kháng thụ thể CRF1 như thuốc chống trầm cảm và an thần

Springer Science and Business Media LLC - Tập 20 - Trang 887-896 - 2012
Glenn R. Valdez1
1Department of Psychology, Grand Valley State University, Allendale, USA

Tóm tắt

Rối loạn trầm cảm và lo âu là những hình thức bệnh tâm thần rất phổ biến, được coi là rối loạn liên quan đến stress vì một số dạng sự kiện cuộc sống căng thẳng thường kích hoạt triệu chứng của chúng. Yếu tố giải phóng corticotropin (CRF) là một neuropeptide dài 41 axit amin tham gia vào việc trung gian hóa các phản ứng thần kinh nội tiết, tự động và hành vi đối với stress, và các nghiên cứu lâm sàng cung cấp bằng chứng cho vai trò của CRF trong sự phát triển của rối loạn trầm cảm và lo âu. Hai phân loại thụ thể CRF đã được xác định cho đến nay - thụ thể CRF1 và thụ thể CRF2. Các mô hình tiền lâm sàng cung cấp bằng chứng về vai trò của thụ thể CRF1 trong việc kích hoạt phản ứng stress. Dữ liệu từ những thí nghiệm này gợi ý rằng việc đối kháng hoạt động của thụ thể CRF1 có thể cung cấp một liệu pháp dược lý hiệu quả cho các rối loạn tâm thần liên quan đến stress. Bài tổng quan này làm nổi bật những tiến bộ đến nay trong việc phát triển các thuốc đối kháng thụ thể CRF1 như là liệu pháp dược lý tiềm năng cho rối loạn trầm cảm và lo âu. Mặc dù cần có thêm nghiên cứu để điều tra đầy đủ về hiệu quả và hồ sơ an toàn của các thuốc đối kháng thụ thể CRF1 như là các thuốc ứng viên cho những rối loạn này, nhưng kết quả từ các thí nghiệm tiền lâm sàng và các thử nghiệm lâm sàng là hứa hẹn. Việc phát triển thêm các hợp chất này là cần thiết.

Từ khóa

#trầm cảm #lo âu #yếu tố giải phóng corticotropin #thụ thể CRF1 #thuốc đối kháng

Tài liệu tham khảo

Andrade L, Caraveo-Anduaga JJ, Berglund P, et al. The epidemiology of major depressive episodes: results from the International Consortium of Psychiatric Epidemiology (ICPE) surveys. Int J Methods Psychiatr Res 2003; 12(1): 3–21 Kessler RC, Dernier O, Frank RG, et al. Prevalence and treatment of mental disorders, 1990 to 2003. N Engl J Med 2005 Jun 16; 352(24): 2515–23 DuPont RL, Rice DP, Miller LS, et al. Economic costs of anxiety disorders. Anxiety 1996; 2(4): 167–72 Lenze EJ, Mulsant BH, Shear MK, et al. Comorbid anxiety disorders in depressed elderly patients. Am J Psychiatry 2000 May; 157(5): 722–8 Vale W, Spiess J, Rivier C, et al. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 1981; 213: 1394–7 Vale W, Rivier C, Brown MR, et al. Chemical and biological characterization of corticotropin releasing factor. Recent Prog Horm Res 1983; 39: 245–70 Dunn AJ, Berridge CW. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res Rev 1990; 15: 71–100 Koob GF, Heinrichs SC, Menzaghi F, et al. Corticotropin releasing factor, stress, and behavior. Seminars Neurosci 1994; 6: 221–9 Koob GF, Heinrichs SC. A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res 1999; 848(1–2): 141–52 Smith MA, Davidson J, Ritchie JC, et al. The corticotropin-releasing hormone test in patients with posttraumatic stress disorder. Biol Psychiatry 1989 Aug; 26(4): 349–55 Nemeroff CB, Widerlov E, Bissette G, et al. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 1984 Dec 14; 226(4680): 1342–4 Galard R, Catalan R, Castellanos JM, et al. Plasma corticotropin-releasing factor in depressed patients before and after the dexamethasone suppression test. Biol Psychiatry 2002 Mar 15; 51(6): 463–8 Nemeroff CB, Owens MJ, Bissette G, et al. Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Arch Gen Psychiatry 1988 Jun; 45(6): 577–9 Raadsheer FC, Hoogendijk WJ, Stam FC, et al. Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 1994 Oct; 60(4): 436–44 Roy-Byrne PP, Uhde TW, Post RM, et al. The corticotropin-releasing hormone stimulation test in patients with panic disorder. Am J Psychiatry 1986 Jul; 143(7): 896–9 Sutton RE, Koob GF, Le Moal M, et al. Corticotropin releasing factor produces behavioural activation in rats. Nature 1982; 297(5864): 331–3 Koob GF, Swerdlow N, Seeligson M, et al. Effects of alpha-flupenthixol and naloxone on CRF-induced locomotor activation. Neuroendocrinology 1984; 39(5): 459–64 Britton KT, Morgan J, Rivier J, et al. Chlordiazepoxide attenuates response suppression induced by corticotropin-releasing factor in the conflict test. Psychopharmacology 1985; 86(1–2): 170–4 Swerdlow NR, Geyer MA, Vale WW, et al. Corticotropin-releasing factor potentiates acoustic startle in rats: blockade by chlordiazepoxide. Psychopharmacology 1986; 88(2): 147–52 Cole BJ, Koob GF. Propranolol antagonizes the enhanced conditioned fear produced by corticotropin releasing factor. J Pharmacol Exp Ther 1988; 247(3): 902–10 Krahn DD, Gosnell BA, Grace M, et al. CRF antagonist partially reverses CRF- and stress-induced effects on feeding. Brain Res Bull 1986; 17(3): 285–9 Arase K, York DA, Shimizu H, et al. Effects of corticotropin-releasing factor on food intake and brown adipose tissue thermogenesis in rats. Am J Physiol 1988; 255 (3 Pt 1): E255–9 Stenzel-Poore MP, Heinrichs SC, Rivest S, et al. Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J Neurosci 1994; 14 (5 Pt 1): 2579–84 Swerdlow NR, Britton KT, Koob GF. Potentiation of acoustic startle by corticotropin-releasing factor (CRF) and by fear are both reversed by alpha-helical CRF (9-41). Neuropsychopharmacology 1989; 2(4): 285–92 Menzaghi F, Howard RL, Heinrichs SC, et al. Characterization of a novel and potent corticotropin-releasing factor antagonist in rats. J Pharmacol Exp Ther 1994; 269(2): 564–72 Macey DJ, Koob GF, Markou A. CRF and urocortin decreased brain stimulation reward in the rat: reversal by a CRF receptor antagonist. Brain Res 2000; 866(1–2): 82–91 Spina MG, Basso AM, Zorrilla EP, et al. Behavioral effects of central administration of the novel CRF antagonist astressin in rats. Neuropsychopharmacology 2000; 22(3): 230–9 Heinrichs SC, Menzaghi F, Pich EM, et al. Anti-stress action of a corticotropin-releasing factor antagonist on behavioral reactivity to stressors of varying type and intensity. Neuropsychopharmacology 1994; 11(3): 179–86 Behan DP, Grigoriadis DE, Lovenberg T, et al. Neurobiology of corticotropin releasing factor (CRF) receptors and CRF-binding protein: implications for the treatment of CNS disorders. Mol Psychiatry 1996; 1(4): 265–77 Valdez GR, Inoue K, Koob GF, et al. Human urocortin II: mild locomotor suppressive and delayed anxiolytic-like effects of a novel corticotropin-releasing factor related peptide. Brain Res 2002; 943(1): 142–50 Smith GW, Aubry JM, Delhi F, et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 1998; 20(6): 1093–102 Timpl P, Spanagel R, Sillaber I, et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet 1998; 19(2): 162–6 Contarino A, Dellu F, Koob GF, et al. Reduced anxiety-like and cognitive performance in mice lacking the corticotropin-releasing factor receptor 1. Brain Res 1999; 835(1): 1–9 Contarino A, Dellu F, Koob GF, et al. Dissociation of locomotor activation and suppression of food intake induced by CRF in CRFR1-deficient mice. Endocrinology 2000; 141(7): 2698–702 Heinrichs SC, Lapsansky J, Lovenberg TW, et al. Corticotropin-releasing factor CRF1, but not CRF2, receptors mediate anxiogenic-like behavior. Regul Pept 1997; 71(1): 15–21 Liebsch G, Landgraf R, Engelmann M, et al. Differential behavioural effects of chronic infusion of CRH 1 and CRH 2 receptor antisense oligonucleotides into the rat brain. J Psychiatr Res 1999; 33(2): 153–63 Skutella T, Probst JC, Renner U, et al. Corticotropin-releasing hormone receptor (type I) antisense targeting reduces anxiety. Neuroscience 1998; 85(3): 795–805 Chalmers DT, Lovenberg TW, De Souza EB. Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci 1995; 15(10): 6340–50 Perrin M, Donaldson C, Chen R, et al. Identification of a second corticotropin-releasing factor receptor gene and characterization of a cDNA expressed in heart. Proc Natl Acad Sci U S A 1995; 92(7): 2969–73 Spina M, Merlo-Pich E, Chan RK, et al. Appetite-suppressing effects of urocortin, a CRF-related neuropeptide. Science 1996; 273(5281): 1561–4 Pelleymounter MA, Joppa M, Carmouche M, et al. Role of corticotropin-releasing factor (CRF) receptors in the anorexic syndrome induced by CRF. J Pharmacol Exp Ther 2000; 293(3): 799–806 Bale TL, Contarino A, Smith GW, et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet 2000; 24(4): 410–4 Kishimoto T, Radulovic J, Radulovic M, et al. Deletion of crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nat Genet 2000; 24(4): 415–9 Isogawa K, Akiyoshi J, Tsutsumi T, et al. Anxiogenic-like effect of corticotropin-releasing factor receptor 2 antisense oligonucleotides infused into rat brain. J Psychopharmacol 2003 Dec; 17(4): 409–13 Reyes TM, Lewis K, Perrin MH, et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci U S A 2001; 98(5): 2843–8 Lewis K, Li C, Perrin MH, et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc Natl Acad Sci U S A 2001; 98(13): 7570–5 Valdez GR, Zorrilla EP, Rivier J, et al. Locomotor suppressive and anxiolytic-like effects of urocortin 3, a highly selective type 2 corticotropin-releasing factor agonist. Brain Res 2003; 980: 206–12 Venihaki M, Sakihara S, Subramanian S, et al. Urocortin III, a brain neuropeptide of the corticotropin-releasing hormone family: modulation by stress and attenuation of some anxiety-like behaviours. J Neuroendocrinol 2004 May; 16(5): 411–22 Takahashi LK, Ho SP, Livanov V, et al. Antagonism of CRF(2) receptors produces anxiolytic behavior in animal models of anxiety. Brain Res 2001; 902(2): 135–42 Pelleymounter MA, Joppa M, Ling N, et al. Pharmacological evidence supporting a role for central corticotropin-releasing factor(2) receptors in behavioral, but not endocrine, response to environmental stress. J Pharmacol Exp Ther 2002 Jul; 302(1): 145–52 Ho SP, Takahashi LK, Livanov V, et al. Attenuation of fear conditioning by antisense inhibition of brain corticotropin releasing factor-2 receptor. Brain Res 2001; 89(1–2): 29–40 Radulovic J, Ruhmann A, Liepold T, et al. Modulation of learning and anxiety by corticotropin-releasing factor (CRF) and stress: differential roles of CRF receptors 1 and 2. J Neurosci 1999; 19(12): 5016–25 Menard J, Treit D. Lateral and medial septal lesions reduce anxiety in the plus-maze and probe-burying tests. Physiol Behav 1996; 60(3): 845–53 Yadin E, Thomas E, Grishkat HL, et al. The role of the lateral septum in anxiolysis. Physiol Behav 1993; 53(6): 1077–83 Vaughan J, Donaldson C, Bittencourt J, et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 1995; 378: 287–92 de Groote L, Penalva RG, Flachskamm C, et al. Differential monoaminergic, neuroendocrine and behavioural responses after central administration of corticotropin-releasing factor receptor type 1 and type 2 agonists. J Neurochem 2005 Jul; 94(1): 45–56 Schulz DW, Mansbach RS, Sprouse J, et al. CP-154,526: a potent and selective nonpeptide antagonist of corticotropin releasing factor receptors. Proc Natl Acad Sci U S A 1996 Sep 17; 93(19): 10477–82 Mansbach RS, Brooks EN, Chen YL. Antidepressant-like effects of CP-154,526, a selective CRF1 receptor antagonist. Eur J Pharmacol 1997 Mar 26; 323(1): 21–6 Maier SF, Seligman MEP. Learned helplessness: theory and evidence. J Exp Psychol Gen 1976; 105: 3–46 Takamori K, Kawashima N, Chaki S, et al. Involvement of corticotropin-releasing factor subtype 1 receptor in the acquisition phase of learned helplessness in rats. Life Sci 2001 Aug 3; 69(11): 1241–8 Takamori K, Kawashima N, Chaki S, et al. Involvement of the hypothalamus-pituitary-adrenal axis in antidepressant activity of corticotropin-releasing factor subtype 1 receptor antagonists in the rat learned helplessness test. Pharmacol Biochem Behav 2001 Jul–Aug; 69(3–4): 445–9 Chaki S, Nakazato A, Kennis L, et al. Anxiolytic- and antidepressant-like profile of a new CRF1 receptor antagonist, R278995/CRA 0450. Eur J Pharmacol 2004 Feb 6; 485(1–3): 145–58 Li YW, Fitzgerald L, Wong H, et al. The pharmacology of DMP696 and DMP904, non-peptidergic CRF1 receptor antagonists. CNS Drug Rev 2005 Spring; 11(1): 21–52 Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatment. Nature 1977; 266: 730–2 Webster EL, Lewis DB, Torpy DJ, et al. In vivo and in vitro characterization of antalarmin, a nonpeptide corticotropin-releasing hormone (CRH) receptor antagonist: suppression of pituitary ACTH release and peripheral inflammation. Endocrinology 1996 Dec; 137(12): 5747–50 Jutkiewicz EM, Wood SK, Houshyar H, et al. The effects of CRF antagonists, antalarmin, CP154,526, LWH234, and R121919, in the forced swim test and on swim-induced increases in adrenocorticotropin in rats. Psychopharmacology (Berl) 2005 Jul; 180(2): 215–23 Nielsen DM, Carey GJ, Gold LH. Antidepressant-like activity of corticotropin-releasing factor type-1 receptor antagonists in mice. Eur J Pharmacol. 2004 Sep 19; 499(1–2): 135–46 Griebel G, Simiand J, Steinberg R, et al. 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor(1) receptor antagonist. II: characterization in rodent models of stress-related disorders. J Pharmacol Exp Ther 2002 Apr; 301(1): 333–45 Yamano M, Yuki H, Yasuda S, et al. Corticotropin-releasing hormone receptors mediate consensus interferon-alpha YM643-induced depression-like behavior in mice. J Pharmacol Exp Ther 2000 Jan; 292(1): 181–7 Overstreet DH, Friedman E, Mathe AA, et al. The Flinders Sensitive Line rat: a selectively bred putative animal model of depression. Neurosci Biobehav Rev 2005; 29(4–5): 739–59 Overstreet DH, Griebel G. Antidepressant-like effects of CRF1 receptor antagonist SSR125543 in an animal model of depression. Eur J Pharmacol 2004 Aug 16; 497(1): 49–53 Overstreet DH, Keeney A, Hogg S. Antidepressant effects of citalopram and CRF receptor antagonist CP-154,526 in a rat model of depression. Eur J Pharmacol 2004 May 25; 492(2–3): 195–201 Ducottet C, Griebel G, Beizung C. Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice. Prog Neuropsychopharmacol Biol Psychiatry 2003 Jun; 27(4): 625–31 Alonso R, Griebel G, Pavone G, et al. Blockade of CRF(1) or V(1b) receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol Psychiatry 2004 Mar; 9(3): 278–86 Griebel G, Perrault G, Sanger DJ. Characterization of the behavioral profile of the non-peptide CRF receptor antagonist CP-154,526 in anxiety models in rodents: comparison with diazepam and buspirone. Psychopharmacology (Berl) 1998; 138(1): 55–66 Robison CL, Meyerhoff JL, Saviolakis GA, et al. A CRH1 antagonist into the amygdala of mice prevents defeat-induced defensive behavior. Ann N Y Acad Sci 2004 Dec; 1032: 324–7 Keck ME, Welt T, Wigger A, et al. The anxiolytic effect of the CRH(1) receptor antagonist R121919 depends on innate emotionality in rats. Eur J Neurosci 2001 Jan; 13(2): 373–80 Zorrilla EP, Valdez GR, Nozulak J, et al. Effects of antalarmin, a CRF type 1 receptor antagonist, on anxiety-like behavior and motor activation in the rat. Brain Res 2002 Oct 18; 952(2): 188–99 Lelas S, Wong H, Li YW, et al. Anxiolytic-like effects of the corticotropin-releasing factor 1 (CRF1) antagonist DMP904 [4-(3-pentylamino)-2,7-dimethyl-8-(2-methyl-4-methoxyphenyl)-pyrazolo-[1,5 -a]-pyrimidine] administered acutely or chronically at doses occupying central CRF1 receptors in rats. J Pharmacol Exp Ther 2004 Apr; 309(1): 293–302 Deak T, Nguyen KT, Ehrlich AL, et al. The impact of the nonpeptide corticotropin-releasing hormone antagonist antalarmin on behavioral and endocrine responses to stress. Endocrinology 1999; 140(1): 79–86 Gehlert DR, Shekhar A, Morin SM, et al. Stress and central urocortin increase anxiety-like behavior in the social interaction test via the CRF1 receptor. Eur J Pharmacol 2005 Feb 21; 509(2–3): 145–53 Harro J, Tonissaar M, Eller M. The effects of CRA 1000, a nonpeptide antagonist of corticotropin-releasing factor receptor type 1, on adaptive behaviour in the rat. Neuropeptides 2001 Apr; 35(2): 100–9 Zobel AW, Nickel T, Kunzel HE, et al. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res 2000 May–Jun; 34(3): 171–81 Kunzel HE, Zobel AW, Nickel T, et al. Treatment of depression with the CRH-1-receptor antagonist R121919: endocrine changes and side effects. J Psychiatr Res 2003 Nov–Dec; 37(6): 525–33 Held K, Kunzel H, Ising M, et al. Treatment with the CRH1-receptor-antagonist R121919 improves sleep-EEG in patients with depression. J Psychiatr Res 2004 Mar–Apr; 38(2): 129–36 Kunzel HE, Ising M, Zobel AW, et al. Treatment with a CRH-1-receptor antagonist (R121919) does not affect weight or plasma leptin concentration in patients with major depression. J Psychiatr Res 2005 Mar; 39(2): 173–7 Zorrilla EP, Koob GF. The therapeutic potential of CRF1 antagonists for anxiety. Expert Opin Investig Drugs 2004 Jul; 13(7): 799–828 Bornstein SR, Webster EL, Torpy DJ, et al. Chronic effects of a nonpeptide corticotropin-releasing hormone type I receptor antagonist on pituitary-adrenal function, body weight, and metabolic regulation. Enocrinology 1998 Apr; 139(4): 1546–55 Broadbear JH, Winger G, Rice KC, et al. Antalarmin, a putative CRH-RI antagonist, has transient reinforcing effects in rhesus monkeys. Psychopharmacology (Berl) 2002 Nov; 164(3): 268–76