Development of CO 2 Selective Poly(Ethylene Oxide)-Based Membranes: From Laboratory to Pilot Plant Scale

Engineering - Tập 3 Số 4 - Trang 485-493 - 2017
Torsten Brinkmann1, Jelena Lillepärg1, Heiko Notzke1, Jan Pohlmann1, Sergey Shishatskiy1, J. Wind1, Thorsten Wolff1
1Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sholl, 2016, Seven chemical separations to change the world, Nature, 532, 435, 10.1038/532435a

United Nations. Paris Agreement [Internet]. Paris: United Nations Framework Convention on Climate Change. c2014 [cited 2017 Feb 14]. Available from: http://unfccc.int/meetings/paris_nov_2015/meeting/8926.php.

Hawking S. This is the most dangerous time for our planet [Internet]. London: Guardian News and Media Limited or its affiliated companies. c2017 [cited 2017 Feb 14]. Available from: https://www.theguardian.com/commentisfree/2016/dec/01/stephen-hawking-dangerous-time-planet-inequality.

Notz, 2010, CO2 capture for fossil fuel fired power plants, Chemie Ingenieur Technik, 82, 1639, 10.1002/cite.201000006

Leung, 2014, An overview of current status of carbon dioxide capture and storage technologies, Renew Sustain Energy Rev, 39, 426, 10.1016/j.rser.2014.07.093

Huang, 2014, Pressure ratio and its impact on membrane gas separation processes, J Membr Sci, 463, 33, 10.1016/j.memsci.2014.03.016

NETL. 2016 CO2 capture technology project review meeting [Internet]. [cited 2017 Jul 17]. Available from: http://www.netl.doe.gov/events/conference-proceedings/2016/2016-co2-capture-technology-project-review-meeting#t3.

Yampol’Skii, 1993, Transport characteristics and other physicochemical properties of aged poly(1-(trimethylsilyl)-1-propyne), J Appl Polym Sci, 48, 1935, 10.1002/app.1993.070481107

Harms, 2012, Aging and free volume in a polymer of intrinsic microporosity (PIM-1), J Adhes, 88, 608, 10.1080/00218464.2012.682902

Khan, 2013, Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM), J Membr Sci, 436, 109, 10.1016/j.memsci.2013.02.032

Kim, 2013, Separation performance of PVAm composite membrane for CO2 capture at various pH levels, J Membr Sci, 428, 218, 10.1016/j.memsci.2012.10.009

Hussain, 2010, A feasibility study of CO2 capture from flue gas by a facilitated transport membrane, J Membr Sci, 359, 140, 10.1016/j.memsci.2009.11.035

Liu, 2016, High-performance polymers for membrane CO2/N2 separation, Chemistry, 22, 15980, 10.1002/chem.201603002

Kuehne, 1980, Selective transport of sulfur dioxide through polymer membranes. 1. Polyacrylate and cellulose triacetate single-layer membranes, Ind Eng Chem Prod Res Dev, 19, 609, 10.1021/i260076a018

Kawakami, 1982, Gas permeabilities of cellulose nitrate/poly(ethylene glycol) blend membranes, J Appl Polym Sci, 27, 2387, 10.1002/app.1982.070270708

Saha, 1992, Separation of CO2 from gas mixtures with liquid membranes, Energy Convers Manage, 33, 413, 10.1016/0196-8904(92)90038-X

Chakma, 1995, Separation of CO2 and SO2 from flue gas streams by liquid membranes, Energy Convers Manage, 36, 405, 10.1016/0196-8904(95)00031-8

Okamoto, 1993, Selective permeation of carbon dioxide over nitrogen through polyethyleneoxide-containing polyimide membranes, Chem Lett, 22, 225, 10.1246/cl.1993.225

Bondar, 2000, Gas transport properties of poly(ether-b-amide) segmented block copolymers, J Polym Sci Pol Phys, 38, 2051, 10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D

Metz, 2005, Mixed gas water vapor/N2 transport in poly(ethylene oxide) poly(butylene terephthalate) block copolymers, J Membr Sci, 266, 51, 10.1016/j.memsci.2005.05.010

Lin, 2005, Materials selection guidelines for membranes that remove CO2 from gas mixtures, J Mol Struct, 739, 57, 10.1016/j.molstruc.2004.07.045

Patel, 2004, Mesoblends of polyether block copolymers with poly(ethylene glycol), Macromolecules, 37, 1394, 10.1021/ma0356257

Car, 2008, PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation, J Membr Sci, 307, 88, 10.1016/j.memsci.2007.09.023

Lillepärg, 2014, Stability of blended polymeric materials for CO2 separation, J Membr Sci, 467, 269, 10.1016/j.memsci.2014.05.039

White, 2015, Extended flue gas trials with a membrane-based pilot plant at a one-ton-per-day carbon capture rate, J Membr Sci, 496, 48, 10.1016/j.memsci.2015.08.003

Merkel, 2012, Carbon dioxide capture with membranes at an IGCC power plant, J Membr Sci, 389, 441, 10.1016/j.memsci.2011.11.012

Car, 2008, Tailor-made polymeric membranes based on segmented block copolymers for CO2 separation, Adv Funct Mater, 18, 2815, 10.1002/adfm.200800436

Yave, 2010, Nanometric thin film membranes manufactured on square meter scale: Ultra-thin films for CO2 capture, Nanotechnology, 21, 10.1088/0957-4484/21/39/395301

Yave, 2010, CO2-philic polymer membrane with extremely high separation performance, Macromolecules, 43, 326, 10.1021/ma901950u

Rahman, 2016, A thermodynamic study of CO2 sorption and thermal transition of PolyActive™ under elevated pressure, Polymer, 93, 132, 10.1016/j.polymer.2016.04.024

Yave, 2011, Polymeric membranes for post-combustion carbon dioxide (CO2) capture, 160

Car, 2010, Tailoring polymeric membrane based on segmented block copolymers for CO2 separation, 227

Lillepärg, 2016, Membranmaterialentwicklung für CO2-Abtrennungsverfahren, Chemie Ingenieur Technik, 88, 1273, 10.1002/cite.201650212

Scharnagl, 2001, Polyacrylonitrile (PAN) membranes for ultra- and microfiltration, Desalination, 139, 191, 10.1016/S0011-9164(01)00310-1

Abetz, 2006, Developments in membrane research: From material via process design to industrial application, Adv Eng Mater, 8, 328, 10.1002/adem.200600032

Brinkmann, 2015, Pilot scale investigations of the removal of carbon dioxide from hydrocarbon gas streams using poly(ethylene oxide)-poly(butylene terephthalate) PolyActive™ thin film composite membranes, J Membr Sci, 489, 237, 10.1016/j.memsci.2015.03.082

Pohlmann, 2016, Pilot scale separation of CO2 from power plant flue gases by membrane technology, Int J Greenh Gas Control, 53, 56, 10.1016/j.ijggc.2016.07.033

Echt, 2002, Fundamentals of membrane technology for CO2 removal from natural gas, 1

Baker, 2012

Ohlrogge, 2010, Membranes for recovery of volatile organic compounds, 213

Brinkmann, 2013, Theoretical and experimental investigations of flat sheet membrane module types for high capacity gas separation applications, Chemie Ingenieur Technik, 85, 1210, 10.1002/cite.201200238

Notzke H, Brinkmann T, Wolff T, Zhao L, Luhr S. inventors; Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH, Forschungszentrum Jülich GmbH, assignee. Membranmodul. European Patent EP3072575 A1. 2015 Mar 25. German.

Bird, 1960

Marriott, 2003, A general approach to modelling membrane modules, Chem Eng Sci, 58, 4975, 10.1016/j.ces.2003.07.005

Wolff, 2015, CO2 enrichment from flue gas for the cultivation of algae—A field test, Greenh Gas Sci Technol, 5, 505, 10.1002/ghg.1510

Efficient gas separation with SEPURAN® [Internet]. Essen: Evonik Industries AG. c2010 [cited 2017 Feb 13]. Available from: http://www.sepuran.com/product/sepuran/en/Pages/gas-separation.aspx.

Shishatskiy, 2006, Polyimide asymmetric membranes for hydrogen separation: Influence of formation conditions on gas transport properties, Adv Eng Mater, 8, 390, 10.1002/adem.200600024

Stünkel, 2011, Carbon dioxide capture for the oxidative coupling of methane process—A case study in mini-plant scale, Chem Eng Res Des, 89, 1261, 10.1016/j.cherd.2011.02.024

Franz, 2015