Development of 2-2 piezoelectric ceramic/polymer composites by direct-write technique

Journal of Electroceramics - Tập 24 - Trang 219-225 - 2009
J. Sun1, P. Ngernchuklin1, M. Vittadello1, E. K. Akdoğan1, A. Safari1
1The Glenn Howatt Electronic Ceramic Laboratory, Department of Materials Science and Engineering, Rutgers - The State University of New Jersey, Piscataway, USA

Tóm tắt

The Micropen™ direct-write technique was used to fabricate ceramic skeletal structures to develop piezoelectric ceramic/polymer composites with 2–2 connectivity for medical imaging applications. A lead zirconate titanate PZT paste with ∼35 vol.% solids loading was prepared as a writing material and the paste’s rheological properties were characterized to evaluate its feasibly for Micropen deposition. A serpentine pattern was designed and deposited in AutoCAD and with a 100 μm pen tip, respectively. After debinding and sintering, the microstructural analysis showed that the ceramic structures were fully densified, with good bonding among layers. Typical single-layer thickness was ∼50 μm, and sintered line width was ∼120 μm. The composites containing 30–45 vol.% PZT were fabricated within 1 cm2 area, with thicknesses ranging from 350 to 380 μm. Their electromechanical and dielectric properties were measured and found similar to that of composites fabricated by other techniques. The k t was ∼0.61, d 33 was 210–320, with Q m of ∼6 and dielectric constant of 650–940.

Tài liệu tham khảo

B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics. (Academic, New York, 1971), pp. 271–280 T.R. Gururaja, A. Safari, N.E. Newnham, L.E. Cross, in Electronic Ceramics, ed. by L.M. Levinson (Marcel Dekker, New York, 1987), pp. 93–145 A. Safari, M. Allahverdi, E.K. Akdogan, J. Mater. Sci. 41, 177 (2006). doi:10.1007/s10853-005-6062-x V.F. Janas, A. Safari, J. Am. Ceram. Soc. 78(11), 2945 (1995). doi:10.1111/j.1151-2916.1995.tb09068.x W. Hackenberger, S. Kown, P. Rehrig, in Proc. of the IEEE Ultrason. Symp. 1253 (2002) J. Park, S. Lee, S. Park, J. Cho, S. Jung, J. Han, S. Kang, Sens. Actuators A Phys. 108, 206 (2003). doi:10.1016/S0924-4247(03)00362-5 K. Li, D.W. Zeng, K.C. Yung, H.L.W. Chan, C.L. Choy, Mater. Chem. Phys. 75, 147 (2000). doi:10.1016/S0254-0584(02)00044-5 Y.H. Koh, C.B. Yoon, S.M. Lee, H.E. Kim, J. Am. Ceram. Soc. 88(4), 1060 (2005). doi:10.1111/j.1551-2916.2005.00210.x G.M. Lous, I.A. Cornejo, T.F. McNulty, A. Safari, S.C. Danforth, J. Am. Ceram. Soc. 83(1), 12 (2000). doi:10.1111/j.1151-2916.2000.tb01159.x S. Turcu, B. Jadidian, S.C. Danforth, A. Safari, J. Electroceram. 9, 165 (2002). doi:10.1023/A:1023209107995 J.A. Lewis, J. Am. Ceram. Soc. 89(12), 3599 (2006). doi:10.1111/j.1551-2916.2006.01382.x J.E. Smay, J. Cesarano III, B.A. Tuttle, J.A. Lewis, J. Am. Ceram. Soc. 87(2), 293 (2004). doi:10.1111/j.1551-2916.2004.00293.x O. Dufaud, P. Marchal, S. Corbel, J. Eur. Ceram. Soc. 22, 2081 (2002). doi:10.1016/S0955-2219(02)00036-5 R. Noguera, M. Lejeune, T. Chartier, J. Eur. Ceram. Soc. 25, 2055 (2005). doi:10.1016/j.jeurceramsoc.2005.03.223 A. Piqué, D.B. Chrisey, in Direct-Write Technologies for Rapid Prototyping Applications: Sensors, Electronics, and Integrated Powder Sources, ed. by A. Piqué, D.B. Chrisey (Academic, New York, 2001), pp. 1–11 P.G. Clem, N.S. Bell, G.L. Brennecka, B.H. King, D.B. Dimos, in Direct-Write Technologies for Rapid Prototyping Applications: Sensors, Electronics, and Integrated Powder Sources, ed. by A. Piqué, D.B. Chrisey (Academic, New York, 2001), pp. 229–256 D. Dimos, P. Yang, T.J. Garino, M.V. Raymoud, M.A. Rodriguez, in Proc. of Solid Freeform Fabrication Symp., Austin, TX, University of Texas at Austin, 133 (1999) B.H. King, D. Dimos, P. Yang, S.L. Morissette, J. Electroceram. 3(2), 173 (1999). doi:10.1023/A:1009999227894 S.L. Morissette, J.A. Lewis, P.G. Clem, J. Cesarano III, D.B. Dimos, J. Am. Ceram. Soc. 84(11), 2462 (2001) V. Tohver, S.L. Morissette, J.A. Lewis, B.A. Tuttle, J.A. Voigt, D.B. Dimos, J. Am. Ceram. Soc. 85(1), 123 (2002) J. Sun, M. Vittadello, E.K. Akdogan, A. Safari, in Proc. of the 15th IEEE International Symposium on the Applications of Ferroelectrics (ISAF) 57 (2006) M. Allahverdi, A. Safari, in Proc. of the 14th IEEE International Symposium on the Applications of Ferroelectrics (ISAF), 250 (2004) M. Kunduraci, W.K. Simon, E.K. Akdogan, A. Safari, in Proc. of the 14th IEEE International Symposium on the Applications of Ferroelectrics (ISAF), 21 (2004) IEEE, Standard on Piezoelectricity, ANSI/IEEE Std. 176, (the Institute of Electrical and Electronics Engineers (IEEE), Inc., New York, 1987) E.K. Akdoğan, M.S. Thesis, METU, Ankara, Turkey (1994) J.S. Reed, Principles of Ceramics Processing, 2nd edn. (Wiley, New York, 1995) D.D.N. Hall, J.T. Bennett, G. Hayward, in Proc. of Soc. Photo-Opt. Instrum. Eng.(SPIE) 1733, 216 (1992) W.A. Smith, in Proc. of IEEE Ultrason. Symp. Montreal, Canada, 2, 755 (1989) T.R. Gururaja, W.A. Schulze, L.E. Cross, IEEE Trans. Sonics Ultrason. SU-32, 481 (1985) T.R. Gururaja, R.E. Newnham, K.A. Klicker, in Proc. of Ultrason. Symp. 576 (1980) W. Cao, Q.M. Zhang, L.E. Cross, IEEE Trans. on Ultrason. Ferroelec. Freq. Contr. 40(2), 103 (1993). doi:10.1109/58.212557