Development and validation of ultra-performance liquid chromatographic method with tandem mass spectrometry for determination of lenalidomide in rabbit and human plasma
Tóm tắt
Lenalidomide (LND) is a potent novel thalidomide analog which demonstrated remarkable clinical activity in treatment of multiple myeloma disease via a multiple-pathways mechanism. Validated sensitive method with high throughput is required for the determination of lenalidomide for pharmacokinetics and toxicokinetic studies. Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) is a preeminent analytical tool for rapid biomedical analysis. A simple, highly sensitive UPLC-MS/MS method was developed and validated for the determination of LND in rabbit and human plasma. After a simple protein precipitation using methanol, LND and carbamazepine (IS) were separated on Acquity UPLC BEH™ C18 column (50 × 2.1 mm, i.d. 1.7 μm, Waters, USA) using a mobile phase consisted of acetonitrile:water:formic acid (65:35:0.1%, v/v/v) pumped at a flow rate of 0.2 mL/min. LND and IS were eluted at 0.71 and 1.92 min, respectively. The mass spectrometric determination was carried out using an electrospray interface operated in the positive mode with multiple reaction monitoring (MRM) mode. The precursor to product ion transitions of m/z 260.1 > 149.0 and m/z 237.0 > 179.0 were used to quantify LND and IS, respectively. The method was linear in the concentration range of 0.23–1000 ng/mL with a limit of quantitation of 0.23 ng/mL. All the validation parameters were in the ranges acceptable by the guidelines of analytical method validation. The proposed UPLC-MS/MS method is simple, rapid and highly sensitive, and hence it could be reliable for pharmacokinetic and toxicokinetic study in both animals and humans.
Tài liệu tham khảo
Kastritis E, Dimopoulos MA: The evolving role of lenalidomide in the treatment of hematologic malignancies. Expert Opin Pharmacother. 2007, 8: 497-509. 10.1517/14656566.8.4.497.
Mitsiades CS, Mitsiades N: CC-5013 (Celgene). Curr Opin Investig Drugs. 2004, 5: 635-647.
Tariman JD: Lenalidomide: a new agent for patients with relapsed or refractory multiple myeloma. Clin J Oncol Nursing. 2007, 11: 569-574.
Sonneveld P, Palumbo A: Lenalidomide: a new therapy for multiple myeloma. EJHPP. 2008, 14: 58-61.
Shah SR, Tran TM: Lenalidomide in myelodysplastic syndrome and multiple myeloma. Drugs. 2007, 67: 1869-1881. 10.2165/00003495-200767130-00005.
Falco P, Cavallo F, Larocca A, Liberati AM, Musto P, Boccadoro M, Palumbo A: Lenalidomide and its role in the management of multiple myeloma. Expert Rev Anticancer Ther. 2008, 8: 865-874. 10.1586/14737140.8.6.865.
Hideshima T, Richardson PG, Anderson KC: Current therapeutic uses of lenalidomide in multiple myeloma. Expert Opin Invest Drugs. 2006, 15: 171-179. 10.1517/13543784.15.2.171.
Corral LG, Haslett PA, Muller GW, Chen R, Wong LM, Ocampo CJ, Patterson RT, Stirling DI, Kaplan G: Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol. 1999, 163: 380-386.
Anderson KC: Lenalidomide and thalidomide: mechanisms of action-similarities and differences. Seminars Hematol. 2005, 42: S3-S8.
Richardson P, Anderson K: Immunomodulatory analogs of thalidomide: an emerging new therapy in myeloma. J Clin Oncol. 2004, 22: 3212-3214. 10.1200/JCO.2004.05.984.
Verhelle D, Corral LG, Wong K, Mueller JH, Parseval LM, Pergakes KJ, Schafer PH, Chen R, Glezer E, Ferguson GD, Lopez-Girona A, Muller GW, Brady HA, Chan KWH: Lenalidomide and CC-4047 inhibit the proliferation of malignant B cells while expanding normal CD34+ progenitor cells. Cancer Res. 2007, 67: 746-755. 10.1158/0008-5472.CAN-06-2317.
Revlimid (lenalidomide) [Full Prescribing Information]. 2012, Summit, NJ: Celgene Corporation, [http://www.revlimid.com/pdf/REVLIMID_PI.pdf]
Richardson PG, Schlossman RL, Weller E: Immunomodulatory drug CC 5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood. 2002, 100: 3063-3067. 10.1182/blood-2002-03-0996.
Sastry BS, Gananadhamu S, Prasad SVS, Venu GRK: New spectrophotometric methods for estimation of lenalidomide in pharmaceutical formulations. Int J PharmTech Res. 2009, 1: 416-419.
Darwish IA, Khalil NY, Bakheit AH, Alzoman NZ: A highly sensitive fluorimetric method for determination of lenalidomide in its bulk form and capsules via derivatization with fluorescamine. Chem Cent J. 2012, 6 (1): 118-10.1186/1752-153X-6-118.
Saravanan G, Rao BM, Ravikumar M, Suryanarayana MV, Someswararao N, Acharyulu PVR: Development of an HPLC assay method for lenalidomide. Chromatographia. 2007, 66: 287-290. 10.1365/s10337-007-0290-y.
Maheswara RL, Janardhan RK, Bhaskar RL, Raveendra Reddy P: Development of a rapid and sensitive HPLC assay method for lenalidomide capsules and its related substances. E-J Chem. 2012, 9: 1165-1174. 10.1155/2012/673736.
Tohnya TM, Hwang K, Lepper ER: Determination of CC-5013, an analogue of thalidomide, in human plasma by liquid chromatographymass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2004, 811: 135-141.
Liu Q, Farley KL, Johnson AJ, Muthusamy N, Hofmeister CC, Blum KA, Schaaf LJ, Grever MR, Byrd JC, Dalton JT, Phelps MA: Development and validation of a highly sensitive liquid chromatography/mass spectrometry method for simultaneous quantification of lenalidomide and flavopiridol in human plasma. Ther Drug Monit. 2008, 5: 620-627.
US Food and Drug Administration, Center for Drug Evaluation and Research (CDER): Guidance for Industry on Bioanalytical Method Validation. 2001, Rockville, MD: Department of Health and Human Services
European Medicines Agency: guideline on bioanalytical method validation. [http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf]