Development and validation of an optimal GATE model for proton pencil-beam scanning delivery

Zeitschrift für Medizinische Physik - Tập 33 - Trang 591-600 - 2023
Ali Asadi1, Azadeh Akhavanallaf2, Seyed Abolfazl Hosseini1, Naser Vosoughi1, Habib Zaidi2,3,4,5
1Department of Energy Engineering, Sharif University of Technology, Tehran, Iran
2Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
3Geneva University Neurocenter, Geneva University, Geneva, Switzerland
4Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
5Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark

Tài liệu tham khảo

Lomax, 1999, Intensity modulation methods for proton radiotherapy, Phys Med Biol, 44, 185, 10.1088/0031-9155/44/1/014 Paganetti, 2021, Roadmap: proton therapy physics and biology, Phys Med Biol, 66, p. 05RM01, 10.1088/1361-6560/abcd16 Parodi, 2020, Latest developments in in-vivo imaging for proton therapy, Br J Radiol, 93, 20190787, 10.1259/bjr.20190787 Loeffler, 2013, Charged particle therapy—optimization, challenges and future directions, Nat Rev Clin Oncol, 10, 411, 10.1038/nrclinonc.2013.79 Pedroni, 1999, Initial experience of using an active beam delivery technique at PSI, Strahlenther Onkol, 175, 18, 10.1007/BF03038879 Nichiporov, 2011, Range shift and dose perturbation with high-density materials in proton beam therapy, Nucl Instrum Methods Phys Res, Sect B, 269, 2685, 10.1016/j.nimb.2011.07.109 Arjomandy, 2010, Verification of patient-specific dose distributions in proton therapy using a commercial two-dimensional ion chamber array, Med Phys, 37, 5831, 10.1118/1.3505011 Zhu, 2011, Patient-specific quality assurance for prostate cancer patients receiving spot scanning proton therapy using single-field uniform dose, Int J Radiat Oncol Biol Phys, 81, 552, 10.1016/j.ijrobp.2010.11.071 Battistoni, 2016, The FLUKA code: an accurate simulation tool for particle therapy, Front Oncol, 6, 116, 10.3389/fonc.2016.00116 Ferrari A, et al. FLUKA: A multi-particle transport code (Program version 2005): Cern; 2005. Aiginger, 2005, The FLUKA code: New developments and application to 1 GeV/n iron beams, Adv Space Res, 35, 214, 10.1016/j.asr.2005.01.090 Ryckman, 2011 Waters, 2007, The MCNPX Monte Carlo radiation transport code, Hadronic Shower Simulation Workshop, 896, 81, 10.1063/1.2720459 Allison, 2006, Geant4 developments and applications, IEEE Trans Nucl Sci, 53, 270, 10.1109/TNS.2006.869826 Allison, 2016, Recent developments in Geant4, Nucl Instr Meth A, 835, 186, 10.1016/j.nima.2016.06.125 Perl, 2012, TOPAS: an innovative proton Monte Carlo platform for research and clinical applications, Med Phys, 39, 6818, 10.1118/1.4758060 Battistoni, 2016, The FLUKA code: an accurate simulation tool for particle therapy, Front Oncol, 6 Newhauser, 2007, Monte Carlo simulations for configuring and testing an analytical proton dose-calculation algorithm, Phys Med Biol, 52, 4569, 10.1088/0031-9155/52/15/014 Paganetti, 1998, Monte Carlo method to study the proton fluence for treatment planning, Med Phys, 25, 2370, 10.1118/1.598447 Paganetti, 2006, Monte Carlo calculations for absolute dosimetry to determine machine outputs for proton therapy fields, Phys Med Biol, 51, 2801, 10.1088/0031-9155/51/11/008 Paganetti, 2004, Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility, Med Phys, 31, 2107, 10.1118/1.1762792 Parodi, 2012, Monte Carlo simulations to support start-up and treatment planning of scanned proton and carbon ion therapy at a synchrotron-based facility, Phys Med Biol, 57, 3759, 10.1088/0031-9155/57/12/3759 Robert, 2013, Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes, Phys Med Biol, 58, 2879, 10.1088/0031-9155/58/9/2879 Parodi, 2007, Clinical CT-based calculations of dose and positron emitter distributions in proton therapy using the FLUKA Monte Carlo code, Phys Med Biol, 52, 3369, 10.1088/0031-9155/52/12/004 Fiorini, 2018, Defining cyclotron-based clinical scanning proton machines in a FLUKA Monte Carlo system, Med Phys, 45, 963, 10.1002/mp.12701 Fracchiolla, 2015, Characterization and validation of a Monte Carlo code for independent dose calculation in proton therapy treatments with pencil beam scanning, Phys Med Biol, 60, 8601, 10.1088/0031-9155/60/21/8601 Prusator, 2017, TOPAS Simulation of the Mevion S250 compact proton therapy unit, J Appl Clin Med Phys, 18, 88, 10.1002/acm2.12077 Hamad, 2021, Bragg-curve simulation of carbon-ion beams for particle-therapy applications: A study with the GEANT4 toolkit, Nucl Eng Technol, 53, 2767, 10.1016/j.net.2021.02.011 Padilla-Cabal, 2020, Benchmarking a GATE/Geant4 Monte Carlo model for proton beams in magnetic fields, Med Phys, 47, 223, 10.1002/mp.13883 Almhagen, 2018, A beam model for focused proton pencil beams, Phys Med, 52, 27, 10.1016/j.ejmp.2018.06.007 Grevillot, 2011, A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4, Phys Med Biol, 56, 5203, 10.1088/0031-9155/56/16/008 Fuchs, 2021, Computer-assisted beam modeling for particle therapy, Med Phys, 48, 841, 10.1002/mp.14647 Sánchez-Parcerisa, 2019, MultiRBE: Treatment planning for protons with selective radiobiological effectiveness, Med Phys, 46, 4276, 10.1002/mp.13718 Wieser, 2017, Development of the open-source dose calculation and optimization toolkit matRad, Med Phys, 44, 2556, 10.1002/mp.12251 Cisternas, 2015, matRad-a multi-modality open source 3D treatment planning toolkit Burigo, 2018, matRad-An open-source treatment planning toolkit for educational purposes, Med Phys, 6 Shu, 2019, Scanned Proton Beam Performance and Calibration of the Shanghai Advanced Proton Therapy Facility, MethodsX, 6, 1933, 10.1016/j.mex.2019.08.001 Sheng, 2020, Development of a Monte Carlo beam model for raster scanning proton beams and dosimetric comparison, Int J Radiat Biol, 96, 1435, 10.1080/09553002.2020.1812758 Winterhalter, 2020, Evaluation of GATE-RTion (GATE/Geant4) Monte Carlo simulation settings for proton pencil beam scanning quality assurance, Med Phys, 47, 5817, 10.1002/mp.14481 Kurosu, 2014, Optimization of GATE and PHITS Monte Carlo code parameters for uniform scanning proton beam based on simulation with FLUKA general-purpose code, Nucl Instrum Methods Phys Res, Sect B, 336, 45, 10.1016/j.nimb.2014.06.009 Elia, 2019 Elia, 2020, A GATE/Geant4 beam model for the MedAustron non-isocentric proton treatment plans quality assurance, Phys Med, 71, 115, 10.1016/j.ejmp.2020.02.006 Grevillot, 2010, Optimization of GEANT4 settings for proton pencil beam scanning simulations using GATE, Nucl Instrum Methods Phys Res, Sect B, 268, 3295, 10.1016/j.nimb.2010.07.011 Zahra, 2010, Influence of Geant4 parameters on dose distribution and computation time for carbon ion therapy simulation, Phys Med, 26, 202, 10.1016/j.ejmp.2009.12.001 Andreo, 2009, On the clinical spatial resolution achievable with protons and heavier charged particle radiotherapy beams, Phys Med Biol, 54, N205, 10.1088/0031-9155/54/11/N01 Brice, 1985, Book Review: Stopping powers for electrons and positrons (ICRU report 37; International commission on radiation units and measurements, Bethesda, Maryland, USA, 1984). pp. viii+ 267, $24.00; ISBN 0-913394-31-9, Nucl Instrum Meth Phys Res B, 12, 187, 10.1016/0168-583X(85)90718-9 Siebert, 1995, Quality factors, ambient and personal dose equivalent for neutrons, based on the new ICRU stopping power data for protons and alpha particles, Radiat Prot Dosim, 58, 177 Schardt, 2007, Precision Bragg-curve measurements for light-ion beams in water, GSI Scientific Report, 373 Grevillot, 2012, GATE as a GEANT4-based Monte Carlo platform for the evaluation of proton pencil beam scanning treatment plans, Phys Med Biol, 57, 4223, 10.1088/0031-9155/57/13/4223 Grevillot, 2020, Clinical implementation and commissioning of the MedAustron Particle Therapy Accelerator for non-isocentric scanned proton beam treatments, Med Phys, 47, 380, 10.1002/mp.13928 Schneider, 2000, Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions, Phys Med Biol, 45, 459, 10.1088/0031-9155/45/2/314 Bourhaleb, 2008, A treatment planning code for inverse planning and 3D optimization in hadrontherapy, Comput Biol Med, 38, 990, 10.1016/j.compbiomed.2008.07.005 Mynampati, 2012, Application of AAPM TG 119 to volumetric arc therapy (VMAT), J Appl Clin Med Phys, 13, 108, 10.1120/jacmp.v13i5.3382 Mendenhall, 2012, Early outcomes from three prospective trials of image-guided proton therapy for prostate cancer, Int J Radiat Oncol Biol Phys, 82, 213, 10.1016/j.ijrobp.2010.09.024 Zheng, 2007, Monte Carlo study of neutron dose equivalent during passive scattering proton therapy, Phys Med Biol, 52, 4481, 10.1088/0031-9155/52/15/008 Saini, 2016, Clinical commissioning of a pencil beam scanning treatment planning system for proton therapy, Int J Particle Therapy, 3, 51, 10.14338/IJPT-16-0000.1