Development and validation of an optimal GATE model for proton pencil-beam scanning delivery
Tài liệu tham khảo
Lomax, 1999, Intensity modulation methods for proton radiotherapy, Phys Med Biol, 44, 185, 10.1088/0031-9155/44/1/014
Paganetti, 2021, Roadmap: proton therapy physics and biology, Phys Med Biol, 66, p. 05RM01, 10.1088/1361-6560/abcd16
Parodi, 2020, Latest developments in in-vivo imaging for proton therapy, Br J Radiol, 93, 20190787, 10.1259/bjr.20190787
Loeffler, 2013, Charged particle therapy—optimization, challenges and future directions, Nat Rev Clin Oncol, 10, 411, 10.1038/nrclinonc.2013.79
Pedroni, 1999, Initial experience of using an active beam delivery technique at PSI, Strahlenther Onkol, 175, 18, 10.1007/BF03038879
Nichiporov, 2011, Range shift and dose perturbation with high-density materials in proton beam therapy, Nucl Instrum Methods Phys Res, Sect B, 269, 2685, 10.1016/j.nimb.2011.07.109
Arjomandy, 2010, Verification of patient-specific dose distributions in proton therapy using a commercial two-dimensional ion chamber array, Med Phys, 37, 5831, 10.1118/1.3505011
Zhu, 2011, Patient-specific quality assurance for prostate cancer patients receiving spot scanning proton therapy using single-field uniform dose, Int J Radiat Oncol Biol Phys, 81, 552, 10.1016/j.ijrobp.2010.11.071
Battistoni, 2016, The FLUKA code: an accurate simulation tool for particle therapy, Front Oncol, 6, 116, 10.3389/fonc.2016.00116
Ferrari A, et al. FLUKA: A multi-particle transport code (Program version 2005): Cern; 2005.
Aiginger, 2005, The FLUKA code: New developments and application to 1 GeV/n iron beams, Adv Space Res, 35, 214, 10.1016/j.asr.2005.01.090
Ryckman, 2011
Waters, 2007, The MCNPX Monte Carlo radiation transport code, Hadronic Shower Simulation Workshop, 896, 81, 10.1063/1.2720459
Allison, 2006, Geant4 developments and applications, IEEE Trans Nucl Sci, 53, 270, 10.1109/TNS.2006.869826
Allison, 2016, Recent developments in Geant4, Nucl Instr Meth A, 835, 186, 10.1016/j.nima.2016.06.125
Perl, 2012, TOPAS: an innovative proton Monte Carlo platform for research and clinical applications, Med Phys, 39, 6818, 10.1118/1.4758060
Battistoni, 2016, The FLUKA code: an accurate simulation tool for particle therapy, Front Oncol, 6
Newhauser, 2007, Monte Carlo simulations for configuring and testing an analytical proton dose-calculation algorithm, Phys Med Biol, 52, 4569, 10.1088/0031-9155/52/15/014
Paganetti, 1998, Monte Carlo method to study the proton fluence for treatment planning, Med Phys, 25, 2370, 10.1118/1.598447
Paganetti, 2006, Monte Carlo calculations for absolute dosimetry to determine machine outputs for proton therapy fields, Phys Med Biol, 51, 2801, 10.1088/0031-9155/51/11/008
Paganetti, 2004, Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility, Med Phys, 31, 2107, 10.1118/1.1762792
Parodi, 2012, Monte Carlo simulations to support start-up and treatment planning of scanned proton and carbon ion therapy at a synchrotron-based facility, Phys Med Biol, 57, 3759, 10.1088/0031-9155/57/12/3759
Robert, 2013, Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes, Phys Med Biol, 58, 2879, 10.1088/0031-9155/58/9/2879
Parodi, 2007, Clinical CT-based calculations of dose and positron emitter distributions in proton therapy using the FLUKA Monte Carlo code, Phys Med Biol, 52, 3369, 10.1088/0031-9155/52/12/004
Fiorini, 2018, Defining cyclotron-based clinical scanning proton machines in a FLUKA Monte Carlo system, Med Phys, 45, 963, 10.1002/mp.12701
Fracchiolla, 2015, Characterization and validation of a Monte Carlo code for independent dose calculation in proton therapy treatments with pencil beam scanning, Phys Med Biol, 60, 8601, 10.1088/0031-9155/60/21/8601
Prusator, 2017, TOPAS Simulation of the Mevion S250 compact proton therapy unit, J Appl Clin Med Phys, 18, 88, 10.1002/acm2.12077
Hamad, 2021, Bragg-curve simulation of carbon-ion beams for particle-therapy applications: A study with the GEANT4 toolkit, Nucl Eng Technol, 53, 2767, 10.1016/j.net.2021.02.011
Padilla-Cabal, 2020, Benchmarking a GATE/Geant4 Monte Carlo model for proton beams in magnetic fields, Med Phys, 47, 223, 10.1002/mp.13883
Almhagen, 2018, A beam model for focused proton pencil beams, Phys Med, 52, 27, 10.1016/j.ejmp.2018.06.007
Grevillot, 2011, A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4, Phys Med Biol, 56, 5203, 10.1088/0031-9155/56/16/008
Fuchs, 2021, Computer-assisted beam modeling for particle therapy, Med Phys, 48, 841, 10.1002/mp.14647
Sánchez-Parcerisa, 2019, MultiRBE: Treatment planning for protons with selective radiobiological effectiveness, Med Phys, 46, 4276, 10.1002/mp.13718
Wieser, 2017, Development of the open-source dose calculation and optimization toolkit matRad, Med Phys, 44, 2556, 10.1002/mp.12251
Cisternas, 2015, matRad-a multi-modality open source 3D treatment planning toolkit
Burigo, 2018, matRad-An open-source treatment planning toolkit for educational purposes, Med Phys, 6
Shu, 2019, Scanned Proton Beam Performance and Calibration of the Shanghai Advanced Proton Therapy Facility, MethodsX, 6, 1933, 10.1016/j.mex.2019.08.001
Sheng, 2020, Development of a Monte Carlo beam model for raster scanning proton beams and dosimetric comparison, Int J Radiat Biol, 96, 1435, 10.1080/09553002.2020.1812758
Winterhalter, 2020, Evaluation of GATE-RTion (GATE/Geant4) Monte Carlo simulation settings for proton pencil beam scanning quality assurance, Med Phys, 47, 5817, 10.1002/mp.14481
Kurosu, 2014, Optimization of GATE and PHITS Monte Carlo code parameters for uniform scanning proton beam based on simulation with FLUKA general-purpose code, Nucl Instrum Methods Phys Res, Sect B, 336, 45, 10.1016/j.nimb.2014.06.009
Elia, 2019
Elia, 2020, A GATE/Geant4 beam model for the MedAustron non-isocentric proton treatment plans quality assurance, Phys Med, 71, 115, 10.1016/j.ejmp.2020.02.006
Grevillot, 2010, Optimization of GEANT4 settings for proton pencil beam scanning simulations using GATE, Nucl Instrum Methods Phys Res, Sect B, 268, 3295, 10.1016/j.nimb.2010.07.011
Zahra, 2010, Influence of Geant4 parameters on dose distribution and computation time for carbon ion therapy simulation, Phys Med, 26, 202, 10.1016/j.ejmp.2009.12.001
Andreo, 2009, On the clinical spatial resolution achievable with protons and heavier charged particle radiotherapy beams, Phys Med Biol, 54, N205, 10.1088/0031-9155/54/11/N01
Brice, 1985, Book Review: Stopping powers for electrons and positrons (ICRU report 37; International commission on radiation units and measurements, Bethesda, Maryland, USA, 1984). pp. viii+ 267, $24.00; ISBN 0-913394-31-9, Nucl Instrum Meth Phys Res B, 12, 187, 10.1016/0168-583X(85)90718-9
Siebert, 1995, Quality factors, ambient and personal dose equivalent for neutrons, based on the new ICRU stopping power data for protons and alpha particles, Radiat Prot Dosim, 58, 177
Schardt, 2007, Precision Bragg-curve measurements for light-ion beams in water, GSI Scientific Report, 373
Grevillot, 2012, GATE as a GEANT4-based Monte Carlo platform for the evaluation of proton pencil beam scanning treatment plans, Phys Med Biol, 57, 4223, 10.1088/0031-9155/57/13/4223
Grevillot, 2020, Clinical implementation and commissioning of the MedAustron Particle Therapy Accelerator for non-isocentric scanned proton beam treatments, Med Phys, 47, 380, 10.1002/mp.13928
Schneider, 2000, Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions, Phys Med Biol, 45, 459, 10.1088/0031-9155/45/2/314
Bourhaleb, 2008, A treatment planning code for inverse planning and 3D optimization in hadrontherapy, Comput Biol Med, 38, 990, 10.1016/j.compbiomed.2008.07.005
Mynampati, 2012, Application of AAPM TG 119 to volumetric arc therapy (VMAT), J Appl Clin Med Phys, 13, 108, 10.1120/jacmp.v13i5.3382
Mendenhall, 2012, Early outcomes from three prospective trials of image-guided proton therapy for prostate cancer, Int J Radiat Oncol Biol Phys, 82, 213, 10.1016/j.ijrobp.2010.09.024
Zheng, 2007, Monte Carlo study of neutron dose equivalent during passive scattering proton therapy, Phys Med Biol, 52, 4481, 10.1088/0031-9155/52/15/008
Saini, 2016, Clinical commissioning of a pencil beam scanning treatment planning system for proton therapy, Int J Particle Therapy, 3, 51, 10.14338/IJPT-16-0000.1