Development and validation of a GC–MS/MS method for the determination of 11 amphetamines and 34 synthetic cathinones in whole blood

Springer Science and Business Media LLC - Tập 38 Số 1 - Trang 42-58 - 2020
Mateusz Kacper Woźniak1, Laura Banaszkiewicz1, Marek Wiergowski2, Ewa Tomczak2, Marzena Kata2, Beata Szpiech2, Jacek Namieśnik1, Marek Biziuk1
1Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233, Gdańsk, Poland
2Department of Forensic Medicine, Faculty of Medicine, Medical University of Gdańsk, 3A Marii Skłodowskiej-Curie Str., 80-210, Gdańsk, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Woźniak MK, Wiergowski M, Aszyk J, Kubica P, Namieśnik J, Biziuk M (2018) Application of gas chromatography–tandem mass spectrometry for the determination of amphetamine-type stimulants in blood and urine. J Pharm Biomed Anal 148:58–64. https://doi.org/10.1016/j.jpba.2017.09.020

European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) (2018) European drug report 2018: trends and developments. Publications Office of the European Union, Louxembourg. http://www.emcdda.europa.eu/system/files/publications/8585/20181816_TDAT18001ENN_PDF.pdf . Accessed 1 Mar 2019

Mercieca G, Odoardi S, Cassar M, Rossi SS (2018) Rapid and simple procedure for the determination of cathinones, amphetamine-like stimulants and other new psychoactive substances in blood and urine by GC–MS. J Pharm Biomed Anal 149:494–501. https://doi.org/10.1016/j.jpba.2017.11.024

Concheiro M, Castaneto M, Kronstrand R, Huestis MA (2015) Simultaneous determination of 40 novel psychoactive stimulants in urine by liquid chromatography–high resolution mass spectrometry and library matching. J Chromatogr A 1397:32–42. https://doi.org/10.1016/j.chroma.2015.04.002

Tomczak E, Woźniak MK, Kata M, Wiergowski M, Szpiech B, Biziuk M (2018) Blood concentrations of a new psychoactive substance 4-chloromethcathinone (4-CMC) determined in 15 forensic cases. Forensic Toxicol 36:476–485. https://doi.org/10.1007/s11419-018-0427-8

Swortwood MJ, Boland DM, DeCaprio AP (2013) Determination of 32 cathinone derivatives and other designer drugs in serum by comprehensive LC–QQQ–MS/MS analysis. Anal Bioanal Chem 405:1383–1397. https://doi.org/10.1007/s00216-012-6548-8

Alsenedi KA, Morrison C (2018) Determination of amphetamine-type stimulants (ATSs) and synthetic cathinones in urine using solid phase micro-extraction fibre tips and gas chromatography-mass spectrometry. Anal Methods 10:1431–1440. https://doi.org/10.1039/c8ay00041g

Adamowicz P, Tokarczyk B (2016) Simple and rapid screening procedure for 143 new psychoactive substances by liquid chromatography-tandem mass spectrometry. Drug Test Anal 8:652–667. https://doi.org/10.1002/dta.1815

Mogollón NGS, Quiroz-Moreno CD, Prata PS, de Almeida JR, Cevallos AS, Torres-Guiérrez R, Augusto F (2018) New advances in toxicological forensic analysis using mass spectrometry techniques. J Anal Methods Chem 2018:4142527. https://doi.org/10.1155/2018/4142527

Vaiano F, Busardò FP, Palumbo D, Kyriakou C, Fioravanti A, Catalani V, Mari F, Bertol E (2016) A novel screening method for 64 new psychoactive substances and 5 amphetamines in blood by LC–MS/MS and application to real cases. J Pharm Biomed Anal 129:441–449. https://doi.org/10.1016/j.jpba.2016.07.009

Tobiszewski M, Mechlińska A, Zygmunt B, Namieśnik J (2009) Green analytical chemistry in sample preparation for determination of trace organic pollutants. Trends Analyt Chem 28:943–951. https://doi.org/10.1016/j.trac.2009.06.001

Moreno I, Barroso M, Martinho A, Cruz A, Gallardo E (2015) Determination of ketamine and its major metabolite, norketamine, in urine and plasma samples using microextraction by packed sorbent and gas chromatography-tandem mass spectrometry. J Chromatogr B 1004:67–78. https://doi.org/10.1016/j.jchromb.2015.09.032

Dybowski MP, Dawidowicz AL (2018) Application of the QuEChERS procedure for analysis of Δ9-tetrahydrocannabinol and its metabolites in authentic whole blood samples by GC–MS/MS. Forensic Toxicol 36:415–423. https://doi.org/10.1007/s11419-018-0419-8

Rosado T, Fernandes L, Barroso M, Gallardo E (2017) Sensitive determination of THC and main metabolites in human plasma by means of microextraction in packed sorbent and gas chromatography–tandem mass spectrometry. J Chromatogr B 1043:63–73. https://doi.org/10.1016/j.jchromb.2016.09.007

Kinani S, Bouchonnet S, Milan N, Ricordel I (2007) A sensitive and selective method for the detection of diazepam and its main metabolites in urine by gas chromatography-tandem mass spectrometry. J Chromatogr A 1141:131–137. https://doi.org/10.1016/j.chroma.2006.12.008

Cartiser N, Bévalot F, Le Meur C, Gaillard Y, Malicier D, Hubert N, Guitton J (2011) Gas chromatography–tandem mass spectrometry assay for the quantification of four benzodiazepines and citalopram in eleven postmortem rabbit fluids and tissues, with application to animal and human samples. J Chromatogr B 879:2909–2918. https://doi.org/10.1016/j.jchromb.2011.08.023

Levitas MP, Andrews E, Lurie I, Marginean I (2018) Discrimination of synthetic cathinones by GC–MS and GC–MS/MS using cold electron ionization. Forensic Sci Int 288:107–114. https://doi.org/10.1016/j.forsciint.2018.04.026

Busardò FP, Kyriakou C, Tittarelli R, Mannocchi G, Pantano F, Santurro A, Zaami S, Baglìo G (2015) Assessment of the stability of mephedrone in ante-mortem and post-mortem blood specimens. Forensic Sci Int 256:28–37. https://doi.org/10.1016/j.forsciint.2015.07.021

Nowak K, Szpot P, Zawadzki M (2019) Unstability of 4-CMC in human serum specimen. Forensic Toxicol 37:261–264. https://doi.org/10.1007/s11419-018-0455-4

Johnson RD, Botch-Jones SR (2013) The stability of four designer drugs: MDPV, mephedrone, BZP and TFMPP in three biological matrices under various storage conditions. J Anal Toxicol 37:51–55. https://doi.org/10.1093/jat/bks138

Rivier L (2003) Criteria for the identification of compounds by liquid chromatography-mass spectrometry and liquid chromatography–multiple mass spectrometry in forensic toxicology and doping analysis. Anal Chim Acta 492:69–82. https://doi.org/10.1016/S0003-2670(03)00889-4

Scientific Working Group for Forensic Toxicology (2013) Scientific working group for forensic toxicology (SWGTOX) standard practices for method validation in forensic toxicology. J Anal Toxicol 37:452–474. https://doi.org/10.1093/jat/bkt054

US Food and Drug Administration (1996) Guidance for industry. Q2B validation of analytical procedures: methodology. https://www.fda.gov/downloads/drugs/guidances/ucm073384.pdf . Accessed 1 Mar 2019

Adamowicz P, Malczyk A (2019) Stability of synthetic cathinones in blood and urine. Forensic Sci Int 295:36–45. https://doi.org/10.1016/j.forsciint.2018.12.001

Alsenedi KA, Morrison C (2017) Comparison of six derivatizing agents for the determination of nine synthetic cathinones using gas chromatography–mass spectrometry. Anal Methods 9:2732–2743. https://doi.org/10.1039/c7ay00597k

Adamowicz P, Gieroń J, Gil D, Lechowicz W, Skulska A, Tokarczyk B (2016) 3-Methylmethcathinone—interpretation of blood concentrations based on analysis of 95 cases. J Anal Toxicol 40:272–276. https://doi.org/10.1093/jat/bkw018

Kim SY, Kim JY, Kwon W, In MK, Kim YE, Paeng K-J (2013) Method development for simultaneous determination of amphetamine type stimulants and cannabinoids in urine using GC-MS. Microchem J 110:326–333. https://doi.org/10.1016/j.microc.2013.04.004

Kerrigan S, Savage M, Cavazos C, Bella P (2016) Thermal degradation of synthetic cathinones: implications for forensic toxicology. J Anal Toxicol 40:1–11. https://doi.org/10.1093/jat/bkv099

Aszyk J, Kot J, Tkachenko Y, Woźniak M, Bogucka-Kocka A, Kot-Wasik A (2017) Novel liquid chromatography method based on linear weighted regression for the fast determination of isoprostane isomers in plasma samples using sensitive tandem mass spectrometry detection. J Chromatogr B 1051:17–23. https://doi.org/10.1016/j.jchromb.2017.02.021

Rajski Ł, Lozano A, Uclés A, Ferrer C, Fernández-Alba AR (2013) Determination of pesticide residues in high oil vegetal commodities by using various multi-residue methods and clean-ups followed by liquid chromatography tandem mass spectrometry. J Chromatogr A 1304:109–120. https://doi.org/10.1016/j.chroma.2013.06.070

Zawilska JB, Wojcieszak J (2017) α-Pyrrolidinophenones: a new wave of designer cathinones. Forensic Toxicol 35:201–216. https://doi.org/10.1007/s11419-016-0353-6

Ammann D, McLaren JM, Gerostamoulos D, Beyer J (2012) Detection and quantification of new designer drugs in human blood: part 2–designer cathinones. J Anal Toxicol 36:381–389. https://doi.org/10.1093/jat/bks049

Saito T, Namera A, Osawa M, Aoki H, Inokuchi S (2013) SPME-GC-MS analysis of α-pyrrolidinovaleorophenone in blood in a fatal poisoning case. Forensic Toxicol 31:328–332. https://doi.org/10.1007/s11419-013-0183-8

Olesti E, Pujadas M, Papaseit E, Pérez-Mañá C, Pozo ÓJ, Farré M, de la Torre R (2017) GC–MS quantification method for mephedrone in plasma and urine: application to human pharmacokinetics. J Anal Toxicol 41:100–106. https://doi.org/10.1093/jat/bkw120

Molina DK (2009) Handbook of forensic toxicology for medical examiners: practical aspects of criminal and forensic investigations, 1st edn. CRC Press, Boca Raton