Development and testing of a transparent membrane biofouling monitor

Desalination and Water Treatment - Tập 52 Số 10-12 - Trang 1807-1819 - 2014
C. Dreszer1,2, Hans‐Curt Flemming1, Adam D. Wexler2, A. Zwijnenburg2, J.C. Kruithof2, Johannes S. Vrouwenvelder3,4,5,2
1Biofilm Centre, University Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
2Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
3Faculty of Applied Sciences, Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
4Fax: +31 15 2782355
5Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi ArabiaTel. +31 15 2784169

Tóm tắt

Từ khóa


Tài liệu tham khảo

Shannon, 2008, Science and technology for water purification in the coming decades, Nature, 452, 301, 10.1038/nature06599

Baker, 1998, Biofouling in membrane systems—A review, Desalination, 118, 81, 10.1016/S0011-9164(98)00091-5

Ridgway, 1996, Biofouling of membranes, 629

Ridgway, 1983, Microbial fouling of reverse-osmosis membranes used in advanced wastewater treatment technology: Chemical, bacteriological, and ultrastructural analyses, Appl. Environ. Microbiol., 45, 1066, 10.1128/aem.45.3.1066-1084.1983

Schneider, 2005, Dynamics of organic carbon and of bacterial populations in a conventional pretreatment train of a reverse osmosis unit experiencing severe biofouling, J. Membr. Sci., 266, 18, 10.1016/j.memsci.2005.05.006

Tasaka, 1994, Analysis of RO elements operated at more than 80 plants in Japan, Desalination, 96, 259, 10.1016/0011-9164(94)85177-8

Vrouwenvelder, 2008, Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations, Water Res., 42, 4856, 10.1016/j.watres.2008.09.002

Huiting, 2001, Operation of NF/RO plants: From reactive to proactive, Desalination, 139, 183, 10.1016/S0011-9164(01)00309-5

Nederlof, 2000, Comparison of NF/RO membrane performance in integrated membrane systems, Desalination, 131, 257, 10.1016/S0011-9164(00)90024-9

Araújo, 2012, The potential of standard and modified feed spacers for biofouling control, J. Membr. Sci., 403–404, 58, 10.1016/j.memsci.2012.02.015

Creber, 2010, Chemical cleaning of biofouling in reverse osmosis membranes evaluated using magnetic resonance imaging, J. Membr. Sci., 362, 202, 10.1016/j.memsci.2010.06.052

Miller, 2012, Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control, Water Res., 46, 3737, 10.1016/j.watres.2012.03.058

Prest, 2012, Quantitative measurement and visualization of biofilm O2 consumption rates in membrane filtration systems, J. Membr. Sci., 392–393, 66, 10.1016/j.memsci.2011.12.003

Vrouwenvelder, 2010, Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems, Water Res., 44, 689, 10.1016/j.watres.2009.09.054

Vrouwenvelder, 2009, Pressure drop increase by biofilm accumulation in spiral wound RO and NF membrane systems: Role of substrate concentration, flow velocity, substrate load and flow direction, Biofouling, 25, 543, 10.1080/08927010902972225

Vrouwenvelder, 2007, The membrane fouling simulator: A suitable tool for prediction and characterisation of membrane fouling, Water Sci. Technol., 55, 197, 10.2166/wst.2007.259

Vrouwenvelder, 2007, The membrane fouling simulator as a new tool for biofouling control of spiral-wound membranes, Desalination, 204, 170, 10.1016/j.desal.2006.04.028

Vrouwenvelder, 2006, The membrane fouling simulator: A practical tool for fouling prediction and control, J. Membr. Sci., 281, 316, 10.1016/j.memsci.2006.03.046

Schock, 1987, Mass transfer and pressure loss in spiral wound modules, Desalination, 64, 339, 10.1016/0011-9164(87)90107-X

van der Meer, 2003, Mathematical modeling of NF and RO membrane filtration plants and modules, PhD thesis

Vrouwenvelder, 2011, A novel scenario for biofouling control of spiral wound membrane systems, Water Res., 45, 3890, 10.1016/j.watres.2011.04.046

Dreszer, 2013, Hydraulic resistance of biofilms, J. Membr. Sci., 429, 436, 10.1016/j.memsci.2012.11.030

Reasoner, 1985, A new medium for the enumeration and subculture of bacteria from potable water, Appl. Environ. Microbiol., 49, 1, 10.1128/aem.49.1.1-7.1985

Lautenschlager, 2013, A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks, Water Res., 47, 3015, 10.1016/j.watres.2013.03.002

Hammes, 2008, Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes, Water Res., 42, 269, 10.1016/j.watres.2007.07.009

Van Gauwbergen, 1997, Macroscopic fluid flow conditions in spiral-wound membrane elements, Desalination, 110, 287, 10.1016/S0011-9164(97)00104-5

Baker, 1995, Characterisation of fouling of nanofiltration membranes used to treat surface waters, Environ. Technol., 16, 977, 10.1080/09593331608616335

Suwarno, 2012, The impact of flux and spacers on biofilm development on reverse osmosis membranes, J. Membr. Sci., 405–406, 219, 10.1016/j.memsci.2012.03.012

Tran, 2007, An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant, Water Res., 41, 3915, 10.1016/j.watres.2007.06.008

van Paassen, 1998, Integrated multi-objective membrane systems for surface water treatment: Pre-treatment of nanofiltration by riverbank filtration and conventional ground water treatment, Desalination, 118, 239, 10.1016/S0011-9164(98)00137-4

Vrouwenvelder, 2009, Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: A feed spacer problem, Water Res., 43, 583, 10.1016/j.watres.2008.11.019

Flemming, 2003, Role and levels of real-time monitoring for successful anti-fouling strategies—an overview, Water Sci. Technol., 47, 1, 10.2166/wst.2003.0265

Flemming, 1998, Monitoring of fouling and biofouling in technical systems, Water Sci. Technol., 38, 291, 10.2166/wst.1998.0818

Huang, 1991, Optical coherence tomography, Science, 254, 1178, 10.1126/science.1957169

Xi, 2006, High-resolution three-dimensional imaging of biofilm development using optical coherence tomography, J. Biomed. Opt., 11, 034001, 10.1117/1.2209962

Haisch, 2007, Visualisation of transient processes in biofilms by optical coherence tomography, Water Res., 41, 2467, 10.1016/j.watres.2007.03.017

Wagner, 2010, Investigation of the mesoscale structure and volumetric features of biofilms using optical coherence tomography, Biotechnol. Bioeng., 107, 844, 10.1002/bit.22864

Derlon, 2012, Predation influences the structure of biofilm developed on ultrafiltration membranes, Water Res., 46, 3323, 10.1016/j.watres.2012.03.031

Derlon, 2013, Activity of metazoa governs biofilm structure formation and enhances permeate flux during Gravity-Driven Membrane (GDM) filtration, Water Res., 47, 2085, 10.1016/j.watres.2013.01.033

Janjaroen, 2013, Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces, Water Res., 47, 2531, 10.1016/j.watres.2013.02.032