Development and potential of space-borne doppler wind lidar
Tóm tắt
The advantage of lidar over other wind sensors is presented in this paper. With more than 20 years research, the development of the space-borne wind lidar is reviewed. Longer-term investigation has made many technologies suitable for the wind lidar measurement from an orbital platform become mature. However, there are still some problems to be solved. In order to obtain the optimal performance in wind detection, great importance is being attached to the simulation of a virtual space-borne wind lidar system on computer as developed by NASA and ESA.
Tài liệu tham khảo
Abreu, V. J., 1979. Wind measurements from an orbital platform using a lidar system with incoherent detection: an analysis. Appl. Opt., 18: 2992–2997.
Chanin, M. L., A. Gariner, A. Hauchecorne, and J. Porteneuve, 1989. A Doppler lidar for measuring winds in the middle atmosphere. Geophy. Res. Lett., 16: 1273–1276.
Christian, W., L. Ines, and S. Juergen, 1999. Spaceborne Doppler lidar perspectives. Proc. SPIE 3583: 350–359.
ESA, 1998. ATLID: The Technology Development Programme for ESA’s Satellite-borne Atmospheric Lidar A. E. MariniMechanical Systems Division, ESA Directorate for Technical and Operational Support, ESTEC, Noordwijk, The Netherlands.
ESA, 1999. Atmospheric Dynamics Mission. Reports for Mission Selection: The Four Candidate Earth Explorer Core Missions. ESA SP-1233 (4), European Space Agency, Paris, 157 pp.
Flesia, C., and C. Korb, 1999. Theory of the double-edge molecular technique for Doppler lidar wind measurement. Appl. Opt., 38: 432–440.
Garnier, A., and M. L. Chanin, 1992. Description of a Doppler Rayleigh LIDAR for Measuring Winds in the Middle Atmosphere. Appl. Phys. (B), 55: 35–40.
Juergen, S., and L. Ines, 1997. LabVIEW software for lidar simulation. Proc. SPIE., 3104: 285–289.
Juergen, S., L. Ines, and W. Christian, 1999. LIENS: Atmospheric lidar end-to-end simulator. Proc. SPIE., 3583: 380–386.
Kavaya, M. J., G. D. Spiers, and R. G. Frehlich, 2000. Potential pitfalls related to space-based lidar remote sensing of the Earth with an emphasis on wind measuremen. SPIE, 4035: 2–12.
Korb, C. L., B. Gentry, and Weng, C., 1992. The edge technique-theory and application to the lidar measurement of atmospheric winds. Appl. Opt., 31, 4202–4213.
Korb, C. L., B. Gentry, and Li, X. F., 1997. Edge technique Doppler lidar wind measurements with high vertical resolution. Appl. Opt., 36: 5976–5983.
Korb, C. L., B. M. Gentry, Li, S. X., and C. Flesia, 1998. Theory of the double-edge technique for Doppler lidar wind measurement. Appl. Opt., 37: 3097–3104.
Liu, Z. S., Chen, W. B., Zhang, T. L., Hair, J. W., and She, C. Y., 1996. Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling. In: Application of Lidar to Current Atmospheric Topics. A. J. Sedlacek, ed., Proc. SPIE, 2833: 128–135.
Liu, Z. S., Chen, W. B., Zhang, T. L., J. W. Hair and She, C. Y., 1997. An incoherent doppler lidar for groundbased atmospheric wind profiling. Appl. Phys. (B), 64(5): 561–566.
McGill, M. J., and J. D. Spinhirne, 1998. Comparison of two direct-detection Doppler lidar techniques. Opt. Eng., 37: 2675–2686.
McKay, J. A. 2000. Comment on ‘Theory of the doubleedge molecular technique for Doppler lida wind measurement’. Appl. Opt., 39: 993–996.
Mckay, J. A., 1999. Fabry-Perot etalon aperture requirements for direct detection Doppler wind lidar from earth orbit. Appl. Opt., 38: 5859–5866.
Menzies, R. T., and R. M. Hardesty, 1989. Coherent Doppler lidar for measurements of wind fields. IEEE, 77: 449–460.
Rothermel, J., R. M. Hardesty, and R. T. Menzies, 1995. Characterizing sub-grid scale processes and assessing satellite Doppler wind lidar with MACAWS. Proceedings of 6th Symposium on Global Change Studies, Dallas, 1995. American Meteorological Society, Boston, 118–121.
Salamitou, P., A. Dabas, and P. H. Flamant, 1995. Simulation in the time domain for heterodyne coherent laser radar. Appl. Opt., 34: 499–506.
Souprayen, C., A. Garnier, A. Hertzog, A. Hauchecoune, and J. Porteneuve, 1999. Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results. Appl. Opt., 38: 2410–2421.
Souprayen, C., A. Garnier, and A. Hertzog, 1999. Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration. Appl. Opt., 38, 2422–2431.
Winker, D. M., R. H. Couch, and M. P. McCormick, 1996. An overview of LITE: NASA’s lidar in-space technology experiment. Proc. IEEE, 84(2): 164–180.
Wood, S. A., G. D. Emmitt, and S. Greco, 2000. DLSM: A coherent and direct detection lidar simulation model for simulating space-based and aircraft-based lidar winds. SPIE, 4035: 2–12.