Development and in vitro evaluation of acyclovir delivery system using nanostructured porous silicon carriers

Chemical Engineering Research and Design - Tập 104 - Trang 551-557 - 2015
Nalin H. Maniya1, Sanjaykumar R. Patel1, Z. V. P. Murthy1
1Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat - 395 007, Gujarat, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andersson, 2004, Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices, Chem. Mater., 16, 4160, 10.1021/cm0401490

Anglin, 2004, Engineering the chemistry and nanostructure of porous silicon Fabry–Perot films for loading and release of a steroid, Langmuir, 20, 11264, 10.1021/la048105t

Ashton, P., Guo, H., Chen, J., Canham, L., 2010. Porous silicon drug-eluting particles, US Patent No. US 20100278931 A1.

Bradley, 2014, Seroprevalence of herpes simplex virus types 1 and 2-United States, 1999–2010, J. Infect. Dis., 209, 325, 10.1093/infdis/jit458

Buriak, 2002, Organometallic chemistry on silicon and germanium surfaces, Chem. Rev., 102, 1272, 10.1021/cr000064s

Calderon, 2013, Nano and microparticulate chitosan-based systems for antiviral topical delivery, Eur. J. Pharm. Sci., 48, 216, 10.1016/j.ejps.2012.11.002

Canham, 1995, Bioactive silicon structure fabrication through nanoetching techniques, Adv. Mater., 7, 1033, 10.1002/adma.19950071215

Cavalli, 2009, Enhanced antiviral activity of acyclovir loaded into β-cyclodextrin-poly(4-acryloylmorpholine) conjugate nanoparticles, J. Control. Release, 137, 116, 10.1016/j.jconrel.2009.04.004

Chayavichitsilp, 2009, Herpes simplex, Pediatr. Rev., 30, 119, 10.1542/pir.30-4-119

Chhablani, 2013, Oxidized porous silicon particles covalently grafted with daunorubicin as a sustained intraocular drug delivery system, Invest. Ophth. Vis. Sci., 54, 1268, 10.1167/iovs.12-11172

Costa, 2001, Modeling and comparison of dissolution profiles, Eur. J. Pharm. Sci., 13, 123, 10.1016/S0928-0987(01)00095-1

Elion, 1982, Mechanism of action and selectivity of acyclovir, Am. J. Med., 73, 7, 10.1016/0002-9343(82)90055-9

Freeman, 2006, Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies, AIDS, 20, 73, 10.1097/01.aids.0000198081.09337.a7

Ghosh, 2006, Design and development of microemulsion drug delivery system of acyclovir for improvement of oral bioavailability, AAPS PharmSciTech, 7, E1, 10.1208/pt070377

Higuchi, 1961, Rate of release of medicaments from ointment bases containing drugs in suspension, J. Pharm. Sci., 50, 874, 10.1002/jps.2600501018

Huang, 2011, Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle, Carbohydr. Polym., 83, 1715, 10.1016/j.carbpol.2010.10.032

ImageJ software. http://rsb.info.nih.gov/ij/download.html (accessed 15.01.14).

Jain, S., Dhaliwal, S., Rana, M., Hardevinder, P.S., Tiwary, A.K., 2011. Sustained release drug delivery system. US 20110244034 A1.

Jarvis, 2010, Thermal oxidation for controlling protein interactions with porous silicon, Langmuir, 26, 14316, 10.1021/la102367z

Kilpelainen, 2009, In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles, J. Control. Release, 137, 166, 10.1016/j.jconrel.2009.03.017

Kinnari, 2011, Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole, Int. J. Pharm., 414, 148, 10.1016/j.ijpharm.2011.05.021

Korsmeyer, 1983, Mechanism of solute release from porous hydrophilic polymers, Int. J. Pharm., 15, 25, 10.1016/0378-5173(83)90064-9

Lembo, 2013, Encapsulation of acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent's antiviral efficacy, Int. J. Pharm., 443, 262, 10.1016/j.ijpharm.2012.12.031

Li, 2000, Porosified silicon wafer structures impregnated with platinum anti-tumor compounds: fabrication, characterization, and diffusion studies, Biomed. Microdevices, 2, 265, 10.1023/A:1009951121205

Maniya, 2013, Electrochemical preparation of microstructured porous silicon layers for drug delivery applications, Superlattice Microst., 55, 144, 10.1016/j.spmi.2012.12.005

Maniya, 2014, Study on surface chemistry and particle size of porous silicon prepared by electrochemical etching, Mater. Res. Bull., 57, 6, 10.1016/j.materresbull.2014.05.014

Mukherjee, 2007, Sustained release of acyclovir from nano-liposomes and nano-niosomes: an in vitro study, Int. J. Nanomed., 2, 213

O’Brien, 1989, Acyclovir: an updated review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy, Drugs, 37, 233, 10.2165/00003495-198937030-00002

Pap, 2005, Thermal oxidation of porous silicon: study on structure, Appl. Phys. Lett., 86, 041501, 10.1063/1.1853519

Pavelic, 2005, Development and in vitro evaluation of a liposomal vaginal delivery system for acyclovir, J. Control. Release, 106, 34, 10.1016/j.jconrel.2005.03.032

Perelman, 2008, pH-triggered release of vancomycin from protein-capped porous silicon films, Nanomedicine, 3, 31, 10.2217/17435889.3.1.31

Salonen, 2005, Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs, J. Control. Release, 108, 362, 10.1016/j.jconrel.2005.08.017

Salonen, 1997, Thermal oxidation of free-standing porous silicon films, Appl. Phys. Lett., 70, 637, 10.1063/1.118294

Sawdon, 2013, Guanosine-based antiviral acyclovir incorporated in ring-opening polymerization of ɛ-caprolactone, Macromol. Res., 21, 1, 10.1007/s13233-012-0188-x

Tanaka, 2010, Sustained small interfering RNA delivery by mesoporous silicon particles, Cancer Res., 70, 3687, 10.1158/0008-5472.CAN-09-3931

Uhlir, 1956, Electrolytic shaping of germanium and silicon, Bell Syst. Tech. J., 35, 333, 10.1002/j.1538-7305.1956.tb02385.x

Wagstaff, 1994, Aciclovir: a reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic efficacy, Drugs, 47, 153, 10.2165/00003495-199447010-00009

Wang, 2010, Oxidized mesoporous silicon microparticles for improved oral delivery of poorly soluble drugs, Mol. Pharm., 7, 227, 10.1021/mp900221e

Wu, 2011, Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles, Biomaterials, 32, 1957, 10.1016/j.biomaterials.2010.11.013

Yao, 2013, Turning an antiviral into an anticancer drug: nanoparticle delivery of acyclovir monophosphate, J. Control. Release, 170, 414, 10.1016/j.jconrel.2013.06.009

Zhang, 2004, Morphology and formation mechanisms of porous silicon, J. Electrochem. Soc., 151, C69, 10.1149/1.1632477