Development and characterization of optical readout well-type glass gas electron multiplier for dose imaging in clinical carbon beams

Physica Medica - Tập 82 - Trang 72-78 - 2021
Takeshi Fujiwara1,2, Yusuke Koba3,4, Yuki Mitsuya5, Riichiro Nakamura6, Ryuta Tatsumoto6, Shuto Kawahara6, Keisuke Maehata7, Hidetoshi Yamaguchi1, Weishan Chang3, Naruhiro Matsufuji3, Hiroyuki Takahashi5
1National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
2Research Institute of Electronics, Shizuoka University, Johoku 3-5-1, Naka-Ku, Hamamatsu 432-8011, Japan
3National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
4Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo 116-8551, Japan
5Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 7-3-1 Bunkyo, Tokyo 113-8656, Japan
6Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motoka, Nishi, Fukuoka 819-0395, Japan
7Department of Radiological Technology, Faculty of Fukuoka Medical Technology, Teikyo University, 6-22 Misaki, Omuta, Fukuoka 836-8505, Japan

Tài liệu tham khảo

Mori, 2018, Scanned carbon-ion beam therapy throughput over the first 7 years at National Institute of Radiological Sciences, Phys Med., 52, 18, 10.1016/j.ejmp.2018.06.002 Kutcher, 1994, Comprehensive QA for radiation oncology: report of AAPM Radiation Therapy Committee Task Group 40, Med Phys., 21, 581, 10.1118/1.597316 Dhanesar, 2013, Quality assurance of proton beams using a multilayer ionization chamber system, Med Phys, 40, 092102, 10.1118/1.4817481 Mirandola, 2015, Dosimetric commissioning and quality assurance of scanned ion beams at the Italian National Center for Oncological Hadrontherapy, Med Phys, 42, 5287, 10.1118/1.4928397 Kato, 2019, Current Status of Dosimetry Tools for Clinical Proton Beams, REM, 8, 56 Hirata, 2017, Correction of quenching effect of a small size OSL dosimeter using Eu:BaFBr and Ce:CaF2, Radiat Meas, 106, 246, 10.1016/j.radmeas.2017.03.043 Russo, 2017, Characterization of a commercial scintillation detector for 2-D dosimetry in scanned proton and carbon ion beams, Phys Med., 34, 48, 10.1016/j.ejmp.2017.01.011 Robertson, 2012, Quenching correction for volumetric scintillation dosimetry of proton beams, Phys Med Biol, 58, 261, 10.1088/0031-9155/58/2/261 Koba, 2013, Response of a plate-type thermoluminescence dosimeter to a therapeutic carbon beam, J Korean Phys Soc, 63, 1432, 10.3938/jkps.63.1432 Boon, 1998, Fast 2D phantom dosimetry for scanning proton beams, Med Phys, 25, 464, 10.1118/1.598221 Karger, 2010, Dosimetry for ion beam radiotherapy, Phys Med Biol, 55, R193, 10.1088/0031-9155/55/21/R01 Fetal, 2003, Dose imaging in radiotherapy with an Ar–CF4 filled scintillating GEM, Nucl Instrum Methods Phys Res A, 513, 42, 10.1016/S0168-9002(03)02133-8 Nichiporov, 2016, Characterization of a GEM-based scintillation detector with He–CF4 gas mixture in clinical proton beams, Phys Med Biol, 61, 2972, 10.1088/0031-9155/61/8/2972 Fujiwara, 2016, High-photon-yield scintillation detector with Ar/CF 4and glass gas electron multiplier, Jpn J Appl Phys, 55, 106401, 10.7567/JJAP.55.106401 Tamborini, 2016, Development and characterization of a 2D scintillation detector for quality assurance in scanned carbon ion beams, Nucl Instrum Methods Phys Res A, 815, 23, 10.1016/j.nima.2016.01.040 Klyachko, 2011, Dose imaging detectors for radiotherapy based on gas electron multipliers, Nucl Instrum Methods Phys Res A, 628, 434, 10.1016/j.nima.2010.07.019 Seravalli, 2008, A scintillating gas detector for 2D dose measurements in clinical carbon beams, Phys Med Biol, 53, 4651, 10.1088/0031-9155/53/17/013 Simon, 2005, A scintillating triple GEM beam monitor for radiation therapy, IEEE conf rec, 5, 2770 Fujiwara, 2018, Radiation imaging with glass gas electron multipliers (G−GEMs), Nucl Instrum Methods Phys Res A, 878, 40, 10.1016/j.nima.2017.09.010 Fujiwara, 2017, Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT, Nucl Instrum Methods Phys Res A, 850, 7, 10.1016/j.nima.2017.01.013 Kanai, 1999, Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy, Int J Radiat Oncol Biol Phys., 44, 201, 10.1016/S0360-3016(98)00544-6 Bellazzini, 1999, The WELL detector, Nucl Instrum Methods Phys Res A, 423, 125, 10.1016/S0168-9002(98)01187-5 Jang, 2012, Fiber-optic Cerenkov radiation sensor for proton therapy dosimetry, Opt Express, 20, 13907, 10.1364/OE.20.013907 Komori, 2004, Optimization of Spiral-Wobbler System for Heavy-Ion Radiotherapy, Jpn J Appl Phys, 43, 6463, 10.1143/JJAP.43.6463 Fiorentin P, Iacomussi P, Rossi G. Characterization and calibration of a CCD detector for light engineering. IEEE Transactions on Instrumentation and Measurement, 2005;54:171–177, Feb. doi: 10.1109/TIM.2004.834055. Takahashi, 2013, Development of a glass GEM, Nucl Instrum Methods Phys Res A, 724, 1, 10.1016/j.nima.2013.04.089