Development and cadherin-mediated control of prefrontal corticostriatal projections in mice

iScience - Tập 26 - Trang 108002 - 2023
Roxana E. Mesías1,2, Yosif Zaki1,2, Christopher A. Guevara1,2, Lauren G. Friedman1,2, Ayan Hussein1,2, Karen Therrien1,2, Alexandra R. Magee1,2, Nikolaos Tzavaras1, Pamela Del Valle1,2, Mark G. Baxter1,3, George W. Huntley1, Deanna L. Benson1
1Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
2Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
3Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA

Tài liệu tham khảo

Balleine, 2007, The role of the dorsal striatum in reward and decision-making, J. Neurosci., 27, 8161, 10.1523/JNEUROSCI.1554-07.2007 Kennerley, 2006, Optimal decision making and the anterior cingulate cortex, Nat. Neurosci., 9, 940, 10.1038/nn1724 Klune, 2021, Linking mPFC circuit maturation to the developmental regulation of emotional memory and cognitive flexibility, Elife, 10, e64567, 10.7554/eLife.64567 Li, 2020, Dysfunction of the corticostriatal pathway in autism spectrum disorders, J. Neurosci. Res., 98, 2130, 10.1002/jnr.24560 Shepherd, 2013, Corticostriatal connectivity and its role in disease, Nat. Rev. Neurosci., 14, 278, 10.1038/nrn3469 Foster, 2021, The mouse cortico-basal ganglia-thalamic network, Nature, 598, 188, 10.1038/s41586-021-03993-3 Alexander, 1986, Parallel Organization of Functionally Segregated circuits linking basal ganglia and cortex, Annu. Rev. Neurosci., 9, 357, 10.1146/annurev.ne.09.030186.002041 Hooks, 2018, Topographic precision in sensory and motor corticostriatal projections varies across cell type and cortical area, Nat. Commun., 9, 3549, 10.1038/s41467-018-05780-7 Hunnicutt, 2016, A comprehensive excitatory input map of the striatum reveals novel functional organization, Elife, 5, e19103, 10.7554/eLife.19103 Hintiryan, 2016, The mouse cortico-striatal projectome, Nat. Neurosci., 19, 1100, 10.1038/nn.4332 Duan, 2014, Type II cadherins guide assembly of a direction-selective retinal circuit, Cell, 158, 793, 10.1016/j.cell.2014.06.047 Frei, 2021, Regulation of neural circuit development by Cadherin-11 provides implications for autism, eNeuro, 8, 10.1523/ENEURO.0066-21.2021 Friedman, 2015, Cadherin-8 expression, synaptic localization, and molecular control of neuronal form in prefrontal corticostriatal circuits, J. Comp. Neurol., 523, 75, 10.1002/cne.23666 Suzuki, 1997, Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains, Mol. Cell. Neurosci., 9, 433, 10.1006/mcne.1997.0626 Getis, 2010, The analysis of spatial association by use of distance statistics, Geogr. Anal., 24, 189, 10.1111/j.1538-4632.1992.tb00261.x Bayer, 1987, Directions in neurogenetic gradients and patterns of anatomical connections in the telencephalon, Prog. Neurobiol., 29, 57, 10.1016/0301-0082(87)90015-3 Marchand, 1986, Histogenesis of the striopallidal system in the rat. Neurogenesis of its neurons, Neuroscience, 17, 573, 10.1016/0306-4522(86)90031-X Deacon, 1994, The lateral ganglionic eminence is the origin of cells committed to striatal phenotypes: neural transplantation and developmental evidence, Brain Res., 668, 211, 10.1016/0006-8993(94)90526-6 van der Kooy, 1987, Neuronal birthdate underlies the development of striatal compartments, Brain Res., 401, 155, 10.1016/0006-8993(87)91176-0 Sohur, 2014, Anatomic and molecular development of corticostriatal projection neurons in mice, Cerebr. Cortex, 24, 293, 10.1093/cercor/bhs342 Balleine, 2010, Human and rodent homologies in action control: Corticostriatal determinants of goal-directed and habitual action, Neuropsychopharmacology, 35, 48, 10.1038/npp.2009.131 Rushworth, 2004, Action sets and decisions in the medial frontal cortex, Trends Cognit. Sci., 8, 410, 10.1016/j.tics.2004.07.009 Calhoun, 2004, Reduction in hippocampal cholinergic innervation is unrelated to recognition memory impairment in aged rhesus monkeys, J. Comp. Neurol., 475, 238, 10.1002/cne.20181 Van Eden, 1985, Postnatal volumetric development of the prefrontal cortex in the rat, J. Comp. Neurol., 241, 268, 10.1002/cne.902410303 Winnubst, 2019, Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain, Cell, 179, 268, 10.1016/j.cell.2019.07.042 Groenewegen, 1987, Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin, Neuroscience, 23, 103, 10.1016/0306-4522(87)90275-2 Kelley, 1982, The amygdalostriatal projection in the rat--an anatomical study by anterograde and retrograde tracing methods, Neuroscience, 7, 615, 10.1016/0306-4522(82)90067-7 Fentress, 1981, Observation on the development of the striatum in mice and rats, Anat. Embryol., 163, 275, 10.1007/BF00315705 Sharpe, 1998, Postnatal development of excitatory synaptic input to the rat neostriatum: an electron microscopic study, Neuroscience, 84, 1163, 10.1016/S0306-4522(97)00583-6 Krajeski, 2019, Dynamic postnatal development of the cellular and circuit properties of striatal D1 and D2 spiny projection neurons, J. Physiol., 597, 5265, 10.1113/JP278416 Britt, 2012, Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens, Neuron, 76, 790, 10.1016/j.neuron.2012.09.040 Goebbels, 2006, Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice, Genesis, 44, 611, 10.1002/dvg.20256 Memi, 2019, Cadherin 8 regulates proliferation of cortical interneuron progenitors, Brain Struct. Funct., 224, 277, 10.1007/s00429-018-1772-4 Harris, 2019, Hierarchical organization of cortical and thalamic connectivity, Nature, 575, 195, 10.1038/s41586-019-1716-z Gerfen, 2013, GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits, Neuron, 80, 1368, 10.1016/j.neuron.2013.10.016 Kozorovitskiy, 2012, Recurrent network activity drives striatal synaptogenesis, Nature, 485, 646, 10.1038/nature11052 Leone, 2015, Satb2 regulates the differentiation of both callosal and subcerebral projection neurons in the developing cerebral cortex, Cerebr. Cortex, 25, 3406, 10.1093/cercor/bhu156 Harris, 2014, Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation, Front. Neural Circ., 8, 76 Graybuck, 2021, Enhancer viruses for combinatorial cell-subclass-specific labeling, Neuron, 109, 1449, 10.1016/j.neuron.2021.03.011 Lein, 2007, Genome-wide atlas of gene expression in the adult mouse brain, Nature, 445, 168, 10.1038/nature05453 Bozdagi, 2010, Persistence of coordinated long-term potentiation and dendritic spine enlargement at mature hippocampal CA1 synapses requires N-cadherin, J. Neurosci., 30, 9984, 10.1523/JNEUROSCI.1223-10.2010 Huntley, 2012, Synaptic loss and retention of different classic cadherins with LTP-associated synaptic structural remodeling in vivo, Hippocampus, 22, 17, 10.1002/hipo.20859 Yin, 2005, The role of the dorsomedial striatum in instrumental conditioning, Eur. J. Neurosci., 22, 513, 10.1111/j.1460-9568.2005.04218.x Balleine, 1998, Goal-directed instrumental action: contingency and incentive learning and their cortical substrates, Neuropharmacology, 37, 407, 10.1016/S0028-3908(98)00033-1 Woon, 2020, Involvement of the rodent prelimbic and medial orbitofrontal cortices in goal-directed action: A brief review, J. Neurosci. Res., 98, 1020, 10.1002/jnr.24567 Hussein, 2022, Cognitive deficits and altered cholinergic innervation in young adult male mice carrying a Parkinson’s disease Lrrk2G2019S knockin mutation, Exp. Neurol., 355, 114145, 10.1016/j.expneurol.2022.114145 Shan, 2014, The acquisition of goal-directed actions generates opposing plasticity in direct and indirect pathways in dorsomedial striatum, J. Neurosci., 34, 9196, 10.1523/JNEUROSCI.0313-14.2014 Shiflett, 2010, Acquisition and performance of goal-directed instrumental actions depends on ERK signaling in distinct regions of dorsal striatum in rats, J. Neurosci., 30, 2951, 10.1523/JNEUROSCI.1778-09.2010 Agmon, 1995, Topological precision in the thalamic projection to neonatal mouse barrel cortex, J. Neurosci., 15, 549, 10.1523/JNEUROSCI.15-01-00549.1995 Simpson, 2013, A quantitative analysis of branching, growth cone turning, and directed growth in zebrafish retinotectal axon guidance, J. Comp. Neurol., 521, 1409, 10.1002/cne.23248 Riccomagno, 2015, Sculpting neural circuits by axon and dendrite pruning, Annu. Rev. Cell Dev. Biol., 31, 779, 10.1146/annurev-cellbio-100913-013038 Brasch, 2018, Homophilic and heterophilic interactions of type II cadherins identify specificity groups underlying cell-adhesive behavior, Cell Rep., 23, 1840, 10.1016/j.celrep.2018.04.012 Basu, 2017, Heterophilic type II cadherins are required for high-magnitude synaptic potentiation in the hippocampus, Neuron, 96, 160, 10.1016/j.neuron.2017.09.009 Kuwako, 2014, Cadherin-7 regulates mossy fiber connectivity in the cerebellum, Cell Rep., 9, 311, 10.1016/j.celrep.2014.08.063 Osterhout, 2011, Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit, Neuron, 71, 632, 10.1016/j.neuron.2011.07.006 Vagnozzi, 2022, Coordinated cadherin functions sculpt respiratory motor circuit connectivity, Elife, 11, e82116, 10.7554/eLife.82116 Duan, 2018, Cadherin combinations recruit dendrites of distinct retinal neurons to a shared interneuronal scaffold, Neuron, 99, 1145, 10.1016/j.neuron.2018.08.019 Patel, 2006, Type II cadherin ectodomain structures: implications for classical cadherin specificity, Cell, 124, 1255, 10.1016/j.cell.2005.12.046 Chang, 2018, The protocadherin 17 gene affects cognition, personality, amygdala structure and function, synapse development and risk of major mood disorders, Mol. Psychiatr., 23, 400, 10.1038/mp.2016.231 Hoshina, 2013, Protocadherin 17 regulates presynaptic assembly in topographic corticobasal Ganglia circuits, Neuron, 78, 839, 10.1016/j.neuron.2013.03.031 Tran, 2013 Mandelbaum, 2019, Distinct cortical-thalamic-striatal circuits through the parafascicular nucleus, Neuron, 102, 636, 10.1016/j.neuron.2019.02.035 Ding, 2011, Semaphorin 3E-Plexin-D1 signaling controls pathway-specific synapse formation in the striatum, Nat. Neurosci., 15, 215, 10.1038/nn.3003 Tran, 2015, The glycoprotein Ten-m3 mediates topography and patterning of thalamostriatal projections from the parafascicular nucleus in mice, Eur. J. Neurosci., 41, 55, 10.1111/ejn.12767 Brust, 2015, Lifetime development of behavioural phenotype in the house mouse (Mus musculus), Front. Zool., 12, S17, 10.1186/1742-9994-12-S1-S17 Faust, 2021, Mechanisms governing activity-dependent synaptic pruning in the mammalian CNS, Nat. Rev. Neurosci., 22, 657, 10.1038/s41583-021-00507-y Uryu, 1999, Synaptogenesis and ultrastructural localization of the polysialylated neural cell adhesion molecule in the developing striatum, J. Comp. Neurol., 405, 216, 10.1002/(SICI)1096-9861(19990308)405:2<216::AID-CNE6>3.0.CO;2-6 Hattori, 1973, Synaptogenesis in the corpus striatum of infant rat, Exp. Neurol., 38, 70, 10.1016/0014-4886(73)90008-3 Peixoto, 2016, Early hyperactivity and precocious maturation of corticostriatal circuits in Shank3B(-/-) mice, Nat. Neurosci., 19, 716, 10.1038/nn.4260 Savage, 2020, Microglial physiological properties and interactions with synapses are altered at presymptomatic stages in a mouse model of Huntington’s disease pathology, J. Neuroinflammation, 17, 98, 10.1186/s12974-020-01782-9 Tepper, 1998, Postnatal development of the rat neostriatum: electrophysiological, light- and electron-microscopic studies, Dev. Neurosci., 20, 125, 10.1159/000017308 Cline, 2001, Dendritic arbor development and synaptogenesis, Curr. Opin. Neurobiol., 11, 118, 10.1016/S0959-4388(00)00182-3 Johnson, 2016, Rule learning enhances structural plasticity of long-range axons in frontal cortex, Nat. Commun., 7, 10785, 10.1038/ncomms10785 McNeill, 1988, Atrophy of medium spiny I striatal dendrites in advanced Parkinson’s disease, Brain Res., 455, 148, 10.1016/0006-8993(88)90124-2 Ingham, 1998, Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway, J. Neurosci., 18, 4732, 10.1523/JNEUROSCI.18-12-04732.1998 Kuo, 2023, Differential Development of dendritic spines in striatal projection neurons of direct and indirect pathways in the caudoputamen and nucleus accumbens, eNeuro, 10, 10.1523/ENEURO.0366-22.2023 Rakic, 1986, Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex, Science, 232, 232, 10.1126/science.3952506 Wilton, 2019, Neuron-glia signaling in synapse slimination, Annu. Rev. Neurosci., 42, 107, 10.1146/annurev-neuro-070918-050306 Choi, 1997, Decreased probability of neurotransmitter release underlies striatal long-term depression and postnatal development of corticostriatal synapses, Proc. Natl. Acad. Sci. USA, 94, 2665, 10.1073/pnas.94.6.2665 Ding, 2008, Corticostriatal and thalamostriatal synapses have distinctive properties, J. Neurosci., 28, 6483, 10.1523/JNEUROSCI.0435-08.2008 Suzuki, 2007, Cadherin-8 is required for the first relay synapses to receive functional inputs from primary sensory afferents for cold sensation, J. Neurosci., 27, 3466, 10.1523/JNEUROSCI.0243-07.2007 Bradfield, 2017, Thalamic control of dorsomedial striatum regulates internal state to guide goal-directed action selection, J. Neurosci., 37, 3721, 10.1523/JNEUROSCI.3860-16.2017 Bradfield, 2020, Goal-directed actions transiently depend on dorsal hippocampus, Nat. Neurosci., 23, 1194, 10.1038/s41593-020-0693-8 Sabbah, 2017, A Cre mouse line for probing irradiance- and direction-encoding retinal networks, eNeuro, 4, 10.1523/ENEURO.0065-17.2017 Schindelin, 2012, Fiji: an open-source platform for biological-image analysis, Nat. Methods., 9, 676, 10.1038/nmeth.2019 Rodriguez, 2006, Rayburst sampling, an algorithm for automated three-dimensional shape analysis from laser scanning microscopy images, Nat. Protoc., 1, 2152, 10.1038/nprot.2006.313 Skarnes, 2011, A conditional knockout resource for the genome-wide study of mouse gene function, Nature, 474, 337, 10.1038/nature10163 Beier, 2015, Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping, Cell, 162, 622, 10.1016/j.cell.2015.07.015 Lee, 2010, Global and local fMRI signals driven by neurons defined optogenetically by type and wiring, Nature, 465, 788, 10.1038/nature09108 Arruda-Carvalho, 2017, Optogenetic examination of prefrontal-amygdala synaptic development, J. Neurosci., 37, 2976, 10.1523/JNEUROSCI.3097-16.2017 Gundersen, 1988, Some new, simple and efficient stereological methods and their use in pathological research and diagnosis, APMIS, 96, 379, 10.1111/j.1699-0463.1988.tb05320.x Fino, 2007, Effects of acute dopamine depletion on the electrophysiological properties of striatal neurons, Neurosci. Res., 58, 305, 10.1016/j.neures.2007.04.002 Matikainen-Ankney, 2016, Altered development of synapse structure and function in striatum caused by Parkinson’s disease-linked LRRK2-G2019S Mutation, J. Neurosci., 36, 7128, 10.1523/JNEUROSCI.3314-15.2016 Guevara, 2020, LRRK2 mutation alters behavioral, synaptic, and nonsynaptic adaptations to acute social stress, J. Neurophysiol., 123, 2382, 10.1152/jn.00137.2020 Cummings, 2020, Prefrontal somatostatin interneurons encode fear memory, Nat. Neurosci., 23, 61, 10.1038/s41593-019-0552-7 Yuste, 2001, Morphological changes in dendritic spines associated with long-term synaptic plasticity, Annu. Rev. Neurosci., 24, 1071, 10.1146/annurev.neuro.24.1.1071