Development and Validation of a Microtiter Plate-Based Assay for Determination of Bacteriophage Host Range and Virulence
Tóm tắt
Từ khóa
Tài liệu tham khảo
The Centers for Disease Control and Prevention (CDC) (2016). National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Surveillance Report for 2014 (Final Report).
Grayson, M.L., Heymann, D., and Pittet, D. (2012). The evolving threat of antimicrobial resistance introduction. Evolving Threat of Antimicrobial Resistance: Options for Action, World Health Organization.
Stanton, 2013, A call for antibiotic alternatives research, Trends Microbiol., 21, 111, 10.1016/j.tim.2012.11.002
Summers, 2001, Bacteriophage therapy, Annu. Rev. Microbiol., 55, 437, 10.1146/annurev.micro.55.1.437
Morange, 2000, Felix d’Herelle and the origins of molecular biology, Hist. Philos. Life Sci., 22, 441
Kutter, 2015, Re-establishing a place for phage therapy in western medicine, Future Microbiol., 10, 685, 10.2217/fmb.15.28
Bruttin, 2004, Phage-host interaction: An ecological perspective, J. Bacteriol., 186, 3677, 10.1128/JB.186.12.3677-3686.2004
Hyman, 2010, Bacteriophage host range and bacterial resistance, Adv. Appl. Microbiol., 70, 217, 10.1016/S0065-2164(10)70007-1
Skurnik, 2007, Biotechnological challenges of phage therapy, Biotechnol. Lett., 29, 995, 10.1007/s10529-007-9346-1
Gill, 2010, Phage choice, isolation, and preparation for phage therapy, Curr. Pharm. Biotechnol., 11, 2, 10.2174/138920110790725311
Nilsson, 2014, Phage therapy-constraints and possibilities, Upsala J. Med. Sci., 119, 192, 10.3109/03009734.2014.902878
Roach, 2017, Phage therapy: Awakening a sleeping giant, Emerg. Top. Life Sci., 1, 93, 10.1042/ETLS20170002
Henry, 2013, Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections, Antimicrob. Agents Chemother., 57, 5961, 10.1128/AAC.01596-13
Lindberg, 2014, Phage fitness may help predict phage therapy efficacy, Bacteriophage, 4, e964081, 10.4161/21597073.2014.964081
Bull, 2014, The habits of highly effective phages: Population dynamics as a framework for identifying therapeutic phages, Front. Microbiol., 5, 618, 10.3389/fmicb.2014.00618
Labrie, 2010, Bacteriophage resistance mechanisms, Nat. Rev. Microbiol., 8, 317, 10.1038/nrmicro2315
Young, 2015, Microbiology. Phage therapy redux-what is to be done?, Science, 350, 1163, 10.1126/science.aad6791
Ross, 2016, More is better: Selecting for broad host range bacteriophages, Front. Microbiol., 7, 1352, 10.3389/fmicb.2016.01352
Kutter, 2009, Phage host range and efficiency of plating, Methods Mol. Biol., 501, 141, 10.1007/978-1-60327-164-6_14
Wilson, 1945, Typing of staphylococci by bacteriophage method, Lancet, 245, 647, 10.1016/S0140-6736(45)90039-0
Zierdt, 1961, The optimal single phage concentration for the typing of Staphylococcus aureus, Bacteriol. Proc., 61, 111
Mirzaei, M.K., and Nilsson, A.S. (2015). Correction: Isolation of phages for phage therapy: A comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE, 10.
Abedon, 2009, Bacteriophage plaques: Theory and analysis, Methods Mol. Biol., 501, 161, 10.1007/978-1-60327-164-6_17
Andrews, 2001, Determination of minimum inhibitory concentrations, J. Antimicrob. Chemother., 48, 5, 10.1093/jac/48.suppl_1.5
Ruengvisesh, 2015, Inhibition of bacterial pathogens in medium and on spinach leaf surfaces using plant-derived antimicrobials loaded in surfactant micelles, J. Food Sci., 80, M2522, 10.1111/1750-3841.13085
Brandt, 2010, Inhibition of listeria monocytogenes by food antimicrobials applied singly and in combination, J. Food Sci., 75, M557, 10.1111/j.1750-3841.2010.01843.x
Miedzybrodzki, 2009, A retrospective analysis of changes in inflammatory markers in patients treated with bacterial viruses, Clin. Exp. Med., 9, 303, 10.1007/s10238-009-0044-2
Vipra, 2013, Determining the minimum inhibitory concentration of bacteriophages: Potential advantages, Adv. Microbiol., 3, 181, 10.4236/aim.2013.32028
Atterbury, 2007, Bacteriophage therapy to reduce Salmonella colonization of broiler chickens, Appl. Environ. Microbiol., 73, 4543, 10.1128/AEM.00049-07
Anany, 2011, A Shigella boydii bacteriophage which resembles Salmonella phage vii, Virol. J., 8, 242, 10.1186/1743-422X-8-242
Cooper, 2011, Rapid and quantitative automated measurement of bacteriophage activity against cystic fibrosis isolates of Pseudomonas aeruginosa, J. Appl. Microbiol., 110, 631, 10.1111/j.1365-2672.2010.04928.x
Griffiths, 2013, Genome sequence and analysis of a broad-host range lytic bacteriophage that infects the Bacillus cereus group, Virol. J., 10, 48, 10.1186/1743-422X-10-48
Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain, P.S., Chertkov, O., Chokoshvili, O., and Coyne, S. (2012). Genomic comparison of Escherichia coli o104:H4 isolates from 2009 and 2011 reveals plasmid, and prophage heterogeneity, including shiga toxin encoding phage stx2. PLoS ONE, 7.
Xie, 2016, Prevalence and characterization of Salmonella enterica and Salmonella bacteriophages recovered from beef cattle feedlots in south Texas, J. Food Prot., 79, 1332, 10.4315/0362-028X.JFP-15-526
Haneklaus, 2012, Salmonella prevalence in bovine lymph nodes differs among feedyards, J. Food Prot., 75, 1131, 10.4315/0362-028X.JFP-11-530
Boyd, 1993, Salmonella reference collection B (SARB): Strains of 37 serovars of subspecies I, J. Gen. Microbiol., 139, 1125, 10.1099/00221287-139-6-1125
Welkos, 1974, Identification of Salmonella with the O-1 bacteriophage, Appl. Microbiol., 28, 618, 10.1128/am.28.4.618-622.1974
Bryan, 2016, Bacteriophage T4 infection of stationary phase E. coli: Life after log from a phage perspective, Front. Microbiol., 7, 1391, 10.3389/fmicb.2016.01391
Abedon, S.T. (2008). Modeling of bacteriophage therapy. Bacteriophage Ecology: Population Growth, Evolution, and Impact of Bacterial Viruses, Cambridge University Press.
Payne, 2001, Understanding bacteriophage therapy as a density-dependent kinetic process, J. Theor. Biol., 208, 37, 10.1006/jtbi.2000.2198
Yin, 1992, Replication of viruses in a growing plaque: A reaction-diffusion model, Biophys. J., 61, 1540, 10.1016/S0006-3495(92)81958-6