Developing hierarchical CdS/NiO hollow heterogeneous architectures for boosting photocatalytic hydrogen generation
Tóm tắt
The hierarchical binary CdS/NiO hollow heterogeneous architectures (HHAs) with p-n heterojunction are constructed by a facile microwave-assisted wet chemical process for high-efficient photocatalytic hydrogen evolution reaction (HER) from water. The asdesigned CdS/NiO HHAs are composed of hexagonal n-type CdS nanoparticles with a size in the range of 20–40 nm attaching to cubic p-type NiO hollow microspheres (HMSs) which are aggregates of porous nanoplates with a thickness of about 20 nm. The photocatalytic water splitting over CdS/NiO HHAs is significantly increased under simulated solar irradiation, among which the most active sample of CdS/NiO-3 (the mass ratio of CdS to NiO is 1:3) exhibits the fastest photocatalytic HER rate of 1.77 mmol·g−1·h−1, being 16.2 times than that of pure CdS. The boosted photocatalytic HER could be attributed to the synergistic effect on the proportional p-n heterojunction with special hierarchical hollow and porous morphology, an enhancement of visible light absorption, and an improvement of photoinduced charge separation as well as the photo-stability given by the composite heterojunction. This work shows a viable strategy to design the heterojunction with special morphology for the efficient hydrogen generation by water splitting utilizing solar energy.
Tài liệu tham khảo
Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414, 625–627.
Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.
Huang, Z. F.; Song, J. J.; Wang, X.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy 2017, 40, 308–316.
Li, Y. X.; Hu, Y. F.; Peng, S. Q.; Lu, G. X.; Li, S. B. Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J. Phys. Chem. C 2009, 113, 9352–9358.
Dai, K.; Lv, J. L.; Zhang, J. F.; Li, Q.; Geng, L.; Liang, C. H. Controlled synthesis of novel 3D CdS hierarchical microtremella for photocatalytic H2 production. Mater. Lett. 2019, 235, 11–14.
Ma, Y. J.; Liu, Y.; Bian, Y.; Zhu, A. Q.; Yang, Y.; Pan, J. Controlling shape anisotropy of hexagonal CdS for highly stable and efficient photocatalytic H2 evolution and photoelectrochemical water splitting. J. Colloid Interface Sci. 2018, 518, 140–148.
Liu, Y.; Ma, Y. J.; Liu, W. W.; Shang, Y. Y.; Zhu, A. Q.; Tan, P. F.; Xiong, X.; Pan, J. Facet and morphology dependent photocatalytic hydrogen evolution with CdS nanoflowers using a novel mixed solvothermal strategy. J. Colloid Interface Sci. 2018, 513, 222–230.
Bie, C. B.; Fu, J. W.; Cheng, B.; Zhang, L. Y. Ultrathin CdS nanosheets with tunable thickness and efficient photocatalytic hydrogen generation. Appl. Surf. Sci. 2018, 462, 606–614.
Chen, W.; Wang, Y. H.; Liu, M.; Gao, L.; Mao, L. Q.; Fan, Z. Y.; Shangguan, W. F. In situ photodeposition of cobalt on CdS nanorod for promoting photocatalytic hydrogen production under visible light irradiation. Appl. Surf. Sci. 2018, 444, 485–490.
Wang, P.; Li, H. T.; Sheng, Y.; Chen, F. Inhibited photocorrosion and improved photocatalytic H2-evolution activity of CdS photocatalyst by molybdate ions. Appl. Surf. Sci. 2019, 463, 27–33.
Zhen, W. L.; Ning, X. F.; Yang, B. J.; Wu, Y. Q.; Li, Z.; Lu, G. X. The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill. Appl. Catal. B Environ. 2018, 221, 243–257.
Kurenkova, A. Y.; Markovskaya, D. V.; Gerasimov, E. Y.; Prosvirin, I. P.; Cherepanova, S. V.; Kozlova, E. A. New insights into the mechanism of photocatalytic hydrogen evolution from aqueous solutions of saccharides over CdS-based photocatalysts under visible light. Int. J. Hydrogen Energy 2020, 45, 30165–30177.
Zhao, W. J.; Niu, H. Y.; Yang, Y. L.; Lv, H. Z.; Lv, J. G.; Cai, Y. Q. One-pot molten salt method for constructing CdS/C3N4 nanojunctions with highly enhanced photocatalytic performance for hydrogen evolution reaction. J. Environ. Sci. 2022, 112, 244–257.
Zhuge, K. X.; Chen, Z. J.; Yang, Y. Q.; Wang, J.; Shi, Y. Y.; Li, Z. Q. In-situ photodeposition of MoS2 onto CdS quantum dots for efficient photocatalytic H2 evolution. Appl. Surf. Sci. 2021, 539, 148234.
Zhu, Y. C.; Li, E.; Zhao, H. C.; Shen, S. W.; Wang, J. H.; Lv, Z. Z.; Liu, M. Y.; Wen, Y.; Lu, L. H.; Liu, J. H. Carbon nitride derived carbon and nitrogen Co-doped CdS for stable photocatalytic hydrogen evolution. Surf. Interfaces 2021, 25, 101262.
Wu, T. F.; Huang, J. F.; Cheng, G.; Pang, Y. W. Enhanced photocatalytic hydrogen evolution based on ternary noble-metal-free Co3O4/CdS/g-C3N4 composite. Mater. Lett. 2021, 292, 129274.
Wang, J. H.; Zhu, Q.; Liao, Y. W.; Fu, H. Q.; Chang, J. M.; Zhang, Y. L.; Kan, T. T.; Gao, H. J.; Huang, W. C. Efficient enhancement of photocatalytic hydrogen evolution of CdS nanorods by nano-CuO. J. Alloys Compd. 2021, 883, 160832.
Wang, B.; Chen, C. X.; Jiang, Y. Y.; Ni, P. J.; Zhang, C. H.; Yang, Y.; Lu, Y. Z.; Liu, P. Rational designing 0D/1D Z-scheme heterojunction on CdS nanorods for efficient visible-light-driven photocatalytic H2 evolution. Chem. Eng. J. 2021, 412, 128690.
Sun, G. T.; Xiao, B.; Shi, J. W.; Mao, S. M.; He, C.; Ma, D. D.; Cheng, Y. H. Hydrogen spillover effect induced by ascorbic acid in CdS/NiO core-shell p-n heterojunction for significantly enhanced photocatalytic H2 evolution. J. Colloid Interface Sci. 2021, 596, 215–224.
Nasir, J. A.; Islam, N.; Rehman, Z. U.; Butler, I. S.; Munir, A.; Nishina, Y. Co and Ni assisted CdS@g-C3N4 nanohybrid: A photocatalytic system for efficient hydrogen evolution reaction. Mater. Chem. Phys. 2021, 259, 124140.
Liu, X. Y.; Bie, C. B.; He, B. W.; Zhu, B. C.; Zhang, L. Y.; Cheng, B. 0D/2D NiS/CdS nanocomposite heterojunction photocatalyst with enhanced photocatalytic H2 evolution activity. Appl. Surf. Sci. 2021, 554, 149622.
Li, P.; Liu, M. L.; Li, J. Q.; Guo, J. L.; Zhou, Q. F.; Zhao, X. L.; Wang, S. J.; Wang, L. J.; Wang, J. M.; Chen, Y. et al. Atomic heterojunction-induced accelerated charge transfer for boosted photocatalytic hydrogen evolution over 1D CdS nanorod/2D ZnIn2S4 nanosheet composites. J. Colloid Interface Sci. 2021, 604, 500–507.
You, D. T.; Pan, B.; Jiang, F.; Zhou, Y. G.; Su, W. Y. CdS nanoparticles/CeO2 nanorods composite with high-efficiency visible-light-driven photocatalytic activity. Appl. Surf. Sci. 2016, 363, 154–160.
Cheng, Z. Q.; Zhao, S. Z.; Kang, L. J.; Li, M. T.; Gao, Z. L. A novel preparation of hollow TiO2 nanotubes and pine-cone shaped CdS nanoparticles coated for enhanced ultraviolet and visible light photocatalytic activity. Mater. Lett. 2018, 214, 80–83.
Guo, F.; Sun, H. R.; Shi, Y. X.; Zhou, F. Y.; Shi, W. L. CdS nanoparticles decorated hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for improved visible-light photocatalytic hydrogen production. Chin. J. Chem. Eng. 2021, in press, DOI: https://doi.org/10.1016/j.cjche.2021.03.055.
Feng, C.; Chen, Z. Y.; Jing, J. P.; Sun, M. M.; Han, J.; Fang, K.; Li, W. B. Synergistic effect of hierarchical structure and Z-scheme heterojunction constructed by CdS nanoparticles and nanoflower-structured Co9S8 with significantly enhanced photocatalytic hydrogen production performance. J. Photochem. Photobiol. A Chem. 2021, 409, 113160.
G7], N. Directional transfer of photocarriers on CdS/g-C3N4 heterojunction modified with Pd as a cocatalyst for synergistically enhanced photocatalytic hydrogen production. Appl. Surf. Sci. 2020, 522, 146442.
Tian, L.; Min, S. X.; Wang, F. Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H2 evolution. Appl. Catal. B Environ. 2019, 259, 118029.
Wang, J. M.; Wang, Z. J.; Qu, P.; Xu, Q. C.; Zheng, J. F.; Jia, S. P.; Chen, J. Z.; Zhu, Z. P. A 2D/1D TiO2 nanosheet/CdS nanorods heterostructure with enhanced photocatalytic water splitting performance for H2 evolution. Int. J. Hydrogen Energy 2018, 43, 7388–7396.
Li, W. B.; Han, J.; Wu, Y. J.; Xiang, Q. Y.; Qiao, Y.; Feng, C.; Chen, Z. Y.; Deng, X. Y. In-situ synthesis of CdS quantum dots on CdCO3 cubic structure for enhanced photocatalytic hydrogen production performance. Mater. Lett. 2019, 255, 126560.
Wang, B.; He, S.; Feng, W. H.; Zhang, L. L.; Huang, X. Y.; Wang, K. Q.; Zhang, S. Y.; Liu, P. Rational design and facile insitu coupling non-noble metal Cd nanoparticles and CdS nanorods for efficient visible-light-driven photocatalytic H2 evolution. Appl. Catal. B Environ. 2018, 236, 233–239.
Zhang, S.; Zhang, B.; Jiang, Y. H.; Xiao, Y.; Zhang, W. L.; Xu, H. Q.; Yang, X. Y.; Liu, Z. C.; Zhang, J. M. In-situ constructing of one-dimensional SnIn4S8-CdS core-shell heterostructure as a direct Z-scheme photocatalyst with enhanced photocatalytic oxidation and reduction capabilities. Appl. Surf. Sci. 2021, 542, 148618.
Yang, Y. R.; Qiu, M.; Chen, F. Y.; Qi, Q.; Yan, G. M.; Liu, L.; Liu, Y. F. Charge-transfer-mediated photocatalysis of W18O49@CdS nanotubes to boost photocatalytic hydrogen production. Appl. Surf. Sci. 2021, 541, 148415.
Peng, J. J.; Shen, J.; Yu, X. H.; Tang, H.; Zulfiqar; Liu, Q. Q. Construction of LSPR-enhanced 0D/2D CdS/MoO3−x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 87–96.
Moniruzzaman, M.; Kim, J. Shape-engineered carbon quantum dots embedded on CdS-nanorods for enhanced visible light harvesting towards photocatalytic application. Appl. Surf. Sci. 2021, 552, 149372.
Wang, J. F.; Wang, P. F.; Wang, C.; Ao, Y. H. In-situ synthesis of well dispersed CoP nanoparticles modified CdS nanorods composite with boosted performance for photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2018, 43, 14934–14943.
Li, X. Y.; Peng, K. Synthesis of 3D mesoporous alumina from natural clays for confining CdS nanoparticles and enhanced photocatalytic performances. Appl. Clay Sci. 2018, 165, 188–196.
Kumar, D. P.; Park, H.; Kim, E. H.; Hong, S.; Gopannagari, M.; Reddy, D. A.; Kim, T. K. Noble metal-free metal-organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: Enhanced activity of CdS for improving photocatalytic hydrogen production. Appl. Catal. B Environ. 2018, 224, 230–238.
Lin, H. F.; Li, Y. Y.; Li, H. Y.; Wang, X. Multi-node CdS heteronanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution. Nano Res. 2017, 10, 1377–1392.
Wang, T.; Chai, Y. Y.; Ma, D. K.; Chen, W.; Zheng, W. W.; Huang, S. M. Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications. Nano Res. 2017, 10, 2699–2711.
Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv Mater. 2017, 29, 1601694.
Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.
Cao, S.; Piao, L. Y.; Chen, X. B. Emerging photocatalysts for hydrogen evolution. Trends Chem. 2020, 2, 57–70.
Wang, W. J.; Chen, H. C.; Wu, J. K.; Wang, H.; Li, S. X.; Wang, B.; Li, Y. Y.; Lin, H. F.; Wang, L. Unique hollow heterostructured CdS/Cd0.5Zn0.5S-Mo1-xWxS2: Highly-improved visible-light-driven H2 generation via synergy of Cd0.5Zn0.5S protective shell and defect-rich Mo1−xWxS2 cocatalyst. Nano Res. 2021, in press, DOI: https://doi.org/10.1007/S12274-021-3585-7.
Qiao, S. S.; Feng, C.; Guo, Y.; Chen, T. X.; Akram, N.; Zhang, Y.; Wang, W.; Yue, F.; Wang, J. D. CdS nanoparticles modified Ni@NiO spheres as photocatalyst for oxygen production in water oxidation system and hydrogen production in water reduction system. Chem. Eng. J. 2020, 395, 125068.
Deng, C. H.; Tian, X. B. Facile microwave-assisted aqueous synthesis of CdS nanocrystals with their photocatalytic activities under visible lighting. Mater. Res. Bull. 2013, 48, 4344–4350.
Oliveira, J. F. A.; Milão, T. M.; Ara, Jo, V. D.; Moreira, M. L.; Longo, E.; Bernardi, M. I. B. Influence of different solvents on the structural, optical and morphological properties of CdS nanoparticles. J. Alloys Compd. 2011, 509, 6880–6883.
Billakanti, S.; Krishnamurthi, M. Facile preparation of surfactant or support material free CdS nanoparticles with enhanced photocatalytic activity. J. Environ. Chem. Eng. 2018, 6, 1250–1256.
Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.
Deng, C. H.; Hu, H. M.; Yu, H.; Wang, M.; Ci, M. Y.; Wang, L. L.; Zhu, S. E.; Wu, Y. P.; Le, H. R. 1D hierarchical CdS NPs/NiO NFs heterostructures with enhanced photocatalytic activity under visible light irradiation. Adv. Powder Technol. 2020, 31, 3158–3167.
Hu, H. M.; Wang, M.; Deng, C. H.; Chen, J. L.; Wang, A. G.; Le, H. R. Satellite-like CdS nanoparticles anchoring onto porous NiO nanoplates for enhanced visible-light photocatalytic properties. Mater. Lett. 2018, 224, 75–77.
Hu, H. M.; Deng, C. H.; Sun, M.; Zhang, K. H.; Wang, M.; Xu, J. Y.; Le, H. R. Facile template-free synthesis of hierarchically porous NiO hollow architectures with high-efficiency adsorptive removal of Congo red. J. Porous Mater. 2019, 26, 1743–1753.
Ba, Q. Q.; Jia, X. J.; Huang, L.; Li, X. Y.; Chen, W.; Mao, L. Q. Alloyed Pd-Ni hollow nanoparticles as cocatalyst of CdS for improved photocatalytic activity toward hydrogen production. Int. J. Hydrogen Energy 2019, 44, 5872–5880.
Zubair, M.; Vanhaecke, E. M. M.; Svenum, I. H.; R. Rtoward hydrogen produ-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation. Green Energy Environ. 2020, 5, 461–472.
Baghbanzadeh, M.; Carbone, L.; Cozzoli, P. D.; Kappe, C. O. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew. Chem., Int, Ed. 2011, 50, 11312–11359.
Hu, Y.; Liu, Y.; Qian, H. S.; Li, Z. Q.; Chen, J. F. Coating colloidal carbon spheres with CdS nanoparticles: Microwave-assisted synthesis and enhanced photocatalytic activity. Langmuir 2010, 26, 18570–18575.
Deng, C. H.; Hu, H. M.; Yu, H.; Xu, J. J.; Ci, M. Y.; Wu, Y. P.; Wang, L. L.; Zhu, S. E. Facile microwave-assisted fabrication of CdS/BiOCl nanostructures with enhanced visible-light-driven photocatalytic activity. J. Mater. Sci. 2021, 56, 2994–3010.
Yu, J.; Ni, Y. H.; Zhai, M. H. Simple solution-combustion synthesis of Ni-NiO@C nanocomposites with highly electrocatalytic activity for methanol oxidation. J. Phys. Chem. Solids. 2018, 112, 119–126.
Zhang, T.; Wu, M. Y.; Yan, D. Y.; Mao, J.; Liu, H.; Hu, W. B.; Du, X. W.; Ling, T.; Qiao, S. Z. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy 2018, 43, 103–109.
Chen, W. Y.; Liu, X. M.; Han, B.; Liang, S. J.; Deng, H.; Lin, Z. Boosted photoreduction of diluted CO2 through oxygen vacancy engineering in NiO nanoplatelets. Nano Res. 2021, 14, 730–737.
Abdullah, H.; Gultom, N. S.; Kuo, D. H. Depletion-zone size control of p-type NiO/n-type Zn(O, S) nanodiodes on high-surface-area SiO2 nanoparticles as a strategy to significantly enhance hydrogen evolution rate. Appl. Catal. B Environ. 2020, 261, 118223.
Lei, C. S.; Zhu, X. F.; Zhu, B. C.; Yu, J. G.; Ho, W. K. Hierarchical NiO-SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water. J. Colloid Interface Sci. 2016, 466, 238–246.
Tang, J. Y.; Guo, R. T.; Zhou, W. G.; Huang, C. Y.; Pan, W. G. Ball-flower like NiO/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction. Appl. Catal. B Environ. 2018, 237, 802–810.
Zhao, H.; Li, C. F.; Liu, L. Y.; Palma, B.; Hu, Z. Y.; Renneckar, S.; Larter, S.; Li, Y.; Kibria, M. G.; Hu, J. G. et al. n-p Heterojunction of TiO2-NiO core-shell structure for efficient hydrogen generation and lignin photoreforming. J. Colloid Interface Sci. 2021, 585, 694–704.
Gopannagari, M.; Kumar, D. P.; Park, H.; Kim, E. H.; Bhavani, P.; Reddy, D. A.; Kim, T. K. Influence of surface-functionalized multi-walled carbon nanotubes on CdS nanohybrids for effective photocatalytic hydrogen production. Appl. Catal. B Environ. 2018, 236, 294–303.
She, H. D.; Li, L. S.; Sun, Y. D.; Wang, L.; Huang, J. W.; Zhu, G. Q.; Wang, Q. Z. Facile preparation of mixed-phase CdS and its enhanced photocatalytic selective oxidation of benzyl alcohol under visible light irradiation. Appl. Surf. Sci. 2018, 457, 1167–1173.
Li, J.; Qian, X. H.; Peng, Y.; Lin, J. Hierarchical structure NiO/CdS for highly performance H2 evolution. Mater. Lett. 2018, 224, 82–85.
Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619.
Reddy, N. L.; Rao, V. N.; Kumari, M. M.; Ravi, P.; Sathish, M.; Shankar, M. V. Effective shuttling of photoexcitons on CdS/NiO core/shell photocatalysts for enhanced photocatalytic hydrogen production. Mater. Res. Bull. 2018, 101, 223–231.
Tauc, J.; Scott, T. A. The optical properties of solids. Phys. Today 1967, 20, 105–107.
Kumar, A.; Kumar, A.; Sharma, G.; Al-Muhtaseb, A. H.; Naushad, M.; Ghfar, A. A.; Stadler, F. J. Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment. Chem. Eng. J. 2018, 334, 462–478.
Khan, Z.; Khannam, M.; Vinothkumar, N.; De, M.; Qureshi, M. Hierarchical 3D NiO-CdS heteroarchitecture for efficient visible light photocatalytic hydrogen generation. J. Mater. Chem. 2012, 22, 12090–12095.