Developing dynamic adaptive policy pathways: a computer-assisted approach for developing adaptive strategies for a deeply uncertain world
Tóm tắt
Sustainable water management in a changing environment full of uncertainty is profoundly challenging. To deal with these uncertainties, dynamic adaptive policies that can be changed over time are suggested. This paper presents a model-driven approach supporting the development of promising adaptation pathways, and illustrates the approach using a hypothetical case. We use robust optimization over uncertainties related to climate change, land use, cause-effect relations, and policy efficacy, to identify the most promising pathways. For this purpose, we generate an ensemble of possible futures and evaluate candidate pathways over this ensemble using an Integrated Assessment Meta Model. We understand ‘most promising’ in terms of the robustness of the performance of the candidate pathways on multiple objectives, and use a multi-objective evolutionary algorithm to find the set of most promising pathways. This results in an adaptation map showing the set of most promising adaptation pathways and options for transferring from one pathway to another. Given the pathways and signposts, decision-makers can make an informed decision on a dynamic adaptive plan in a changing environment that is able to achieve their intended objectives despite the myriad of uncertainties.
Tài liệu tham khảo
Albrechts L (2004) Strategic (spatial) planning reexamined. Environment and Planning B: Planning and Design 31(5):743–758
Bai D, Carpenter T, Mulvey J (1997) Making a case for robust optimization models. Manag Sci 43(7):895–907
Bankes SC (1993) Exploratory Modeling for Policy Analysis. Oper Res 4(3):435–449
Bankes SC (2011) The use of complexity for policy exploration. The SAGE Handbook of Complexity and Management. SAGE Publications Ltd., London, UK
Bankes SC, Walker WE, Kwakkel JH (2013) Exploratory Modeling and Analysis. Encyclopedia of Operations Research and Management Science, 3rd edn. Springer, Berlin, Germany
Ben Haim Y (2001) Information-Gap Decision Theory: Decision Under Severe Uncertainty. Academic, London, UK
Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23(4):769–805
Ben-Tal A, Nemirovski A (2000) Robust solutions of linear programming problems contaminated with uncertain data. Math Program 88(3):411–424
Bertsimas D, Sim M (2004) The Price of Robustness. Oper Res 52(1):35–53. doi:10.1287/opre.1030.0065
Bryant BP, Lempert RJ (2010) Thinking Inside the Box: a participatory computer-assisted approach to scenario discovery. Technol Forecast Soc Chang 77(1):34–49
Coello Coello CA, Lamont GB, van Veldhuizen DA (eds) (2007) Evolutionary algorithms for solving multi-objective problems Genetic and Evolutionary Computation, 2nd edn. USA, Springer, New York
de Lange WJ, Prinsen GF, Hoogewoud JC, Veldhuizen AA, Verkaik J, Oude Essing GHP, van Walsum PEV, Delsman JR, Hunink JC, Massop HTL, Kroon T (2014) An operational, multi-scale, multi-model system for consensus-based, integrated water management and policy analysis: The Netherlands Hydrological Instrument. Environ Model Softw 59:98–108. doi:10.1016/j.envsoft.2014.05.009
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197
Dessai S, Hulme M, Lempert R, Pielke jr R (2009) Do We Need Better Predictions to Adapt to a Changing Climate? Eos 90(13):111–112
Diermanse F, Kwadijk JCJ, Beckers J, Crebas J (2010) Statistical trend analysis of annual maximum discharges of the Rhine and Meuse rivers. Paper presented at the BHS Third International Symposium. Managing Consequences of a Changing Global Environment, Newcastle, UK
Fortin FA, De Rainville FM, Gardner MA, Parizeau M, Gagné C (2012) DEAP: Evolutionary Algorithms Made Easy. J Mach Learn Res 2171–2175(13)
Groves DG, Fischbach JR, Bloom E, Knopman D, Keefe R (2012) Adapting to a Changing Colorado River: Making Future Water Deliveries More Reliable Through Robust Management Strategies. RAND corporation, Santa Monica, CA
Groves DG, Lempert RJ (2007) A New Analytic Method for Finding Policy-Relevant Scenarios. Glob Environ Chang 17:73–85
Haasnoot M, Kwakkel JH, Walker WE, Ter Maat J (2013) Dynamic Adaptive Policy Pathways: A New Method for Crafting Robust Decisions for a Deeply Uncertain World. Global Environmental Change 23 (2):485–498. doi:http://dx.doi.org/10.1016/j.gloenvcha.2012.12.006
Haasnoot M, Middelkoop H, Offermans A, van Beek E, van Deursen WPA (2012) Exploring pathways for sustainable water management in river deltas in a changing environment. Clim Chang 115(3–4):795–819. doi:10.1007/s10584-012-0444-2
Haasnoot M, Van Deursen WPA, Guillaume JHA, Kwakkel JH, van Beek E, Middelkoop H (2014) Fit for purpose? Building and evaluating a fast, integrated model for exploring water policy pathways. Environ Model Softw 60:99–120. doi:10.1016/j.envsoft.2014.05.020
Hadka D, Reed PM (2013) Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework. Evol Comput 21(2):231–259
Hallegatte S (2009) Strategies to adapt to an uncertain climate change. Glob Environ Chang 19:240–247
Hallegatte S, Shah A, Lempert R, Brown C, Gill S (2012) Investment Decision Making Under Deep Uncertainty: Application to Climate Change. Bank, The World
Hamarat C, Kwakkel JH, Pruyt E (2013) Adaptive Robust Design under Deep Uncertainty. Technol Forecast Soc Chang 80(3):408–418. doi:10.1016/j.techfore.2012.10.004
Jeuken A, Reeder T (2011) Short-term decision making and long-term strategies: how to adapt to uncertain climate change. Water Governance 1:29–35
Kasprzyk JR, Nataraj S, Reed PM, Lempert RJ (2013) Many objective robust decision making for complex environmental systems undergoing change. Environmental Modelling & Software:1–17. doi:10.1016/j.envsoft.2012.007
Kouvalis P, Yu G (1997) Robust Discrete Optimization and its application. Kluwer Academic Publisher, Dordrecht, the Netherlands
Kwadijk JCJ, Haasnoot M, Mulder JPM, Hoogvliet MMC, Jeuken ABM, van der Krogt RAA, van Oostrom NGC, Schelfhout HA, van Velzen EH, van Waveren H, de Wit MJM (2010) Using adaptation tipping points to prepare for climate change and sea level rise: a case study in the Netherlands. Wiley Interdiscip Rev Clim Chang 1(5):729–740. doi:10.1002/wcc.64
Kwakkel JH, Auping WL, Pruyt E (2013) Dynamic scenario discovery under deep uncertainty: the future of copper. Technol Forecast Soc Chang 80(4):789–800. doi:10.1016/j.techfore.2012.09.012
Kwakkel JH, Walker WE, Marchau VAWJ (2010a) Adaptive Airport Strategic Planning. Eur J Transp Infrastruct Res 10(3):227–250
Kwakkel JH, Walker WE, Marchau VAWJ (2010b) Classifying and communicating uncertainties in model-based policy analysis. International Journal of Technology, Policy and Management 10(4):299–315. doi:10.1504/IJTPM.2010.036918
Lawrence J, Manning M (2012) Developing adaptive risk management for our changing climate; A report of workshop outcomes under an Envirolink Grant. The New Zealand Climate Change Research. Victoria University of Wellington, Institute
Lempert RJ, Collins M (2007) Managing the Risk of Uncertain Threshold Response: Comparison of Robust, Optimum, and Precautionary Approaches. Risk Anal 24(4):1009–1026
Lempert RJ, Popper S, Bankes S (2003) Shaping the Next One Hundred Years: New Methods for Quantitative. Long Term Policy Analysis, RAND, Santa Monica, CA, USA
Lempert RJ, Scheffran J, Sprinz DF (2009) Methods for Long-Term Environmental Policy Challenges. Global Environmental Politics 9(3):106–133
Lempert RJ, Schlesinger ME (2000) Robust Strategies for Abating Climate Change. Clim Chang 45(3–4):387–401
Lempert RJ, Schlesinger ME, Bankes SC (1996) When We Don't Know the Cost or the Benefits: Adaptive Strategies for Abating Climate Change. Clim Chang 33(2):235–274
McInerney D, Lempert R, Keller K (2012) What are robust strategies in the face of uncertain climate threshold responses. Climate Change 112:547–568
Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer R (2008) Stationarity Is Dead: Whither Water Management? Science 319(5863):573–574
Morgan MG, Dowlatabadi H (1996) Learning from Integrated Assessment of Climate Change. Clim Chang 34(3–4):337–368
Mulvey J, Vanderbei RJ, Zenios SA (1995) Robust optimization of large-scale systems. Oper Res 43(2):264–281
NRC (2009) Informing Decisions in a Changing Climate. Press, National Academy
Offermans A (2012) Perspectives Method: towards socially robust river management. University of Maastricht, Maastricht, the Netherlands
Reed PM, Hadka D, Herman JD, Kasprzyk JR, Kollat JB (2013) Evolutionary multiobjective optimization in water resources: The past, present, and future. Adv Water Resour 51:438–456
Reeder T, Ranger N (Available online) How do you adapt in an uncertain world? Lessons from the Thames Estuary 2100 project. World Resources Report. Washington DC
Rosenhead J, Elton M, Gupta SK (1973) Robustness and Optimality as Criteria for Strategic Decisions. Oper Res Q 23(4):413–431
Rosenzweig C, Solecki WD, Blake R, Bowman M, Faris C, Gornitz V, Horton R, Jacob K, Le Blanc A, Leichenko R, Linkin M, Major D, O'Grady M, Patrick L, Sussman E, Yohe G, Zimmerman R (2011) Developing coastal adaptation to climate change in the New York City infrastructure-shed: process, approach, tools, and strategies. Clim Chang 106(1):93–127
Savage LT (1951) The Theory of Statistical Decisions. J Am Stat Assoc 46(253):55–67
Simon HA (1955) Theories of Decision-Making in Economics and Behavioral Science. Am Econ Rev 49(3):253–283
Swanson DA, Barg S, Tyler S, Venema H, Tomar S, Bhadwal S, Nair S, Roy D, Drexhage J (2010) Seven tools for creating adaptive policies. Technol Forecast Soc Chang 77(6):924–939
Swanson DA, Bhadwal S (eds) (2009) Creating Adaptive Policies: A Guide for Policy-making in an Uncertain World. Sage,
van der Brugge R, Rotmans J, Loorbach D (2005) The transition in Dutch water management. Reg Environ Chang 5:164–176
van Deursen WPA (1995) Geographical information systems and dynamic models. Utrecht University, Utrecht
van Rossum G (1995) Python Reference Manual. CWI,
Wald A (1945) Statistical Decision Functions which Minimize the Maximum Risk. Ann Math 46(2):265–280
Walker WE, Marchau VAWJ, Swanson DA (2010) Addressing deep uncertainty using adaptive policies: Introduction to section 2. Technol Forecast Soc Chang 77(6):917–923
Walker WE, Rahman SA, Cave J (2001) Adaptive Policies, Policy Analysis, and Policymaking. Eur J Oper Res 128(2):282–289
Webster M, Santen N, Parpas P (2011) An approximate dynamic programming framework for modeling global climate poicy under decision-dependent uncertainty. MIT,