Phát triển hệ thống hỗ trợ ra quyết định nhằm cải thiện hiệu suất bền vững của quy trình sản xuất

Journal of Intelligent Manufacturing - Tập 28 - Trang 1421-1440 - 2015
Seung-Jun Shin1, Duck Bong Kim1, Guodong Shao1, Alexander Brodsky2, David Lechevalier1
1Systems Integration Division, Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, USA
2Department of Computer Science, George Mason University, Fairfax, USA

Tóm tắt

Thật khó để định hình và giải quyết các bài toán tối ưu hóa cho hiệu suất bền vững trong sản xuất. Các lý do chính cho điều này là: (1) các bài toán tối ưu hóa thường phức tạp và liên quan đến các khía cạnh sản xuất và bền vững, (2) những bài toán này yêu cầu sự đa dạng của dữ liệu sản xuất, (3) việc mô hình hóa và giải quyết các bài toán tối ưu hóa đòi hỏi chuyên môn và kỹ năng lập trình chuyên biệt, (4) việc sử dụng một ứng dụng tối ưu hóa khác yêu cầu phải mô hình hóa lại các bài toán tối ưu hóa ngay cả đối với cùng một bài toán, và (5) các mô hình tối ưu hóa này không được phân tách hay tái sử dụng. Bài báo này trình bày sự phát triển của một hệ thống hỗ trợ ra quyết định (DSS) cho phép các nhà sản xuất định hình các bài toán tối ưu hóa ở nhiều cấp độ sản xuất, đại diện cho các dữ liệu sản xuất khác nhau, tạo ra các mô hình tương thích và có thể tái sử dụng, và dễ dàng tìm ra giải pháp tối ưu nhằm cải thiện hiệu suất bền vững. Chúng tôi đã triển khai một hệ thống mẫu DSS và áp dụng hệ thống này vào hai nghiên cứu trường hợp. Các nghiên cứu trường hợp chứng minh cách phân bổ tài nguyên ở cấp độ sản xuất và cách chọn các tham số quy trình ở cấp độ đơn vị - quy trình nhằm đạt được mức tiêu thụ năng lượng tối thiểu. Nghiên cứu trong bài báo này sẽ giúp giảm thời gian và công sức trong việc nâng cao hiệu suất bền vững mà không cần quá nhiều vào chuyên môn tối ưu hóa.

Từ khóa

#hệ thống hỗ trợ ra quyết định #tối ưu hóa #hiệu suất bền vững #sản xuất #tiêu thụ năng lượng

Tài liệu tham khảo

Aggarwal, A., Singh, H., Kumar, P., & Singh, M. (2008). Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi’s technique—A comparative analysis. Journal of Materials Processing Technology, 200, 373–384. Alberti, M., Ciurana, J., Rodriguez, C., & Ozel, T. (2011). Design of a decision support system for machine tool selection based on machine characteristics and performance tests. Journal of Intelligent Manufacturing, 22, 263–277. AMT. (2011). MTConnect standard part 1—Overview and protocol. The Association for Manufacturing Technology. http://www.mtconnect.org/. Accessed Feb 2014. Arslan, M., Catay, B., & Budak, E. (2004). A decision support system for machine tool selection. Journal of Manufacturing Technology Management, 15(1), 101–109. Battaia, O., Dolgui, A., Guschinsky, N., & Levin, G. (2012). A decision support system for design of mass production machining lines composed of stations with rotary or mobile table. Robotics and Computer-Integrated Manufacturing, 28, 672–680. Bhushan, R. (2013). Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. Journal of Cleaner Production, 39, 242–254. Biegler, L. (2010). Nonlinear programming: Concepts, algorithms, and applications to chemical processes (Vol. 10). SIAM-Society for Industrial and Applied Mathematics. Brodsky, A., Shao, G., & Riddick, F. (2014). Process analytics formalism for decision guidance in sustainable manufacturing. Journal of Intelligent Manufacturing. doi:10.1007/s10845-014-0892-9. Clausen, J. (1999). Branch and bound algorithms—Principles and examples. University of Copenhagen. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5.7475&rep=rep1&type=pdf. Accessed 19 Nov 2014 Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. New York: Wiley. Diaz, N., Helu, M., & Dornfeld, D. (2010). Design and operation strategies for green machine tool development. In Proceedings of MTTRF 2010 annual meeting. Diaz, N., & Dornfeld, D. (2012). Cost and energy consumption optimization of product manufacture in a flexible manufacturing system. In Proceedings of the 19th CIRP conference on life cycle engineering (pp. 411–416). Dimopoulos, C., & Zalzala, A. (2000). Recent developments in evolutionary computation for manufacturing optimization: Problems, solutions, and comparisons. IEEE Transactions on Evolutionary Computation, 4(2), 93–113. Euzenat, J., & Shvaiko, P. (2007). Ontology mapping. Heidelberg: Springer. Fang, K., Uhan, N., Zhao, F., & Sutherland, J. (2013). Flow shop scheduling with peak power consumption constraints. Annals of Operations Research, 206(1), 115–145. Frischknecht, R., Jungbluth, N., Althaus, H. J., Doka, G., Dones, R., Hischier, R., Hellweg, S., Nemecek, T., Rebitzer, G., & Spielmann, M. (2007). Eco-Invent: Overview and methodology. Swiss Centre for Life Cycle Inventories. http://www.ecoinvent.org/fileadmin/documents/en/01_OverviewAndMethodology.pdf. Accessed Dec 2013. Giachetti, R. (1998). A decision support system for material and manufacturing process selection. Journal of Intelligent Manufacturing, 9, 265–276. Hanafi, I., Khamlichi, A., Cabrera, F., & Almansa, E. (2012). Optimization of cutting conditions for sustainable machining of PEEK-CF30 using TiN tools. Journal of Cleaner Production, 33, 1–9. IBM. (2012). Introducing IBM ILOG CPLEX Optimization Studio V12.2. IBM. http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r2/index.jsp?topic=%2Filog.odms.ide.help%2FContent%2FOptimization%2FDocumentation%2FOPL_Studio%2F_pubskel%2Fglobals%2Feclipse_and_xplatform%2Fps_opl307.html. Accessed Aug 2013. Iqbal, A., Zhang, H., Kong, L., & Hussain, G. (2014). A rule-based system for trade-off among energy consumption, tool life and productivity in machining process. Journal of Intelligent Manufacturing. doi:10.1007/s10845-013-0851-x. Jia, S., Tang, R., & Lv, J. (2014). Machining activity extraction and energy attributes inheritance method to support intelligent energy estimation of machining process. Journal of Intelligent Manufacturing. doi:10.1007/s10845-014-0894-7. Joung, C., Carrell, J., Sakar, P., & Feng, S. (2013). Categorization of indicators for sustainable manufacturing. Ecological Indicators, 24, 148–157. Kellens, K., Dewulf, W., Overcash, M., Hauschild, M., & Duflou, J. (2012). Methodology for systematic analysis and improvement of manufacturing unit process life-cycle inventory (UPLCI) CO2PE! Initiative part1: Methodology description. International Journal of Life Cycle Assessment, 17, 69–78. Kohavi, R., Rothleder, N., & Simoudis, E. (2002). Emerging trends in business analytics. Communications of the ACM, 45(8), 45–48. Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2006). Data preprocessing for supervised leaning. International Journal of Computer Science, 1(2), 111–117. Kumaraguru, S., Rachuri, S., & Lechevalier, D. (2014). Faceted classification of manufacturing processes for sustainability performance evaluation. The International Journal of Advanced Manufacturing Technology, 75(9–12), 1309–1320. Kuram, E., Ozcelik, B., Bayramoglu, M., Demirbas, E., & Simsek, B. (2013). Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments. Journal of Cleaner Production, 42, 159–166. Le, C., & Pang, C. (2013). An energy data-driven decision support system for high-performance manufacturing industries. International Journal of Automation and Logistics, 1(1), 61–79. Lei, Q., Wang, H., & Song, Y. (2014). Hybrid knowledge model of process planning and its green extension. Journal of Intelligent Manufacturing. doi:10.1007/s10845-014-0928-1. Leng, J., Jiang, P., & Ding, K. (2014). Implementing of a three-phase integrated decision support model for parts machining outsourcing. International Journal of Production Research, 52(12), 3614–3636. Li, C., Tang, Y., Cui, L., & Li, P. (2013a). A quantitative approach to analyze carbon emissions of CNC-based machining systems. Journal of Intelligent Manufacturing. Li, L., Liu, F., Chen, B., & Li, C. (2013b). Multi-objective optimization of cutting parameters in sculptured parts machining based on neural network. Journal of Intelligent Manufacturing. Madan, J., Mani, M., & Lyons, K. (2013). Characterizing energy consumption of the injection molding process. In Proceedings of the ASME 2013 international manufacturing science and engineering conference. OECD. (2009). Sustainable manufacturing and eco-innovation—Framework, practices and measurement. http://www.oecd.org/innovation/inno/43423689.pdf. Organization for Economic Co-operation and Development. Accessed Jan 2014. OMG. (2007). OMG unified modeling language -superstructure. Object Management Group. http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/. Accessed Feb 2014. Rao, S. (2009). Engineering optimization: Theory and practice. New York: Wiley. Roy, C. (2010). A complete framework for verification, validation, and uncertainty quantification in scientific comuting. In Proceedings of 48th AIAA aerospace sciences meeting. Shao, G., Brodsky, A., Shin, S., & Kim, D. (2014). Decision guidance methodology for sustainable manufacturing using process analytics formalism. Journal of Intelligent Manufacturing. doi:10.1007/s10845-014-0995-3. Shin, S. (2010). Development of a framework for green productivity enhancement and its application to machining system. Ph. D. Dissertation. POSTECH. Shin, S., Woo, J., & Rachuri, S. (2014). Predictive analytics model for power consumption in manufacturing. Procedia CIRP, 15, 153–158. Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The hadoop distributed file system. In Proceedings of IEEE mass storage Sys & Tech. Taha, Z., & Rostam, S. (2012). A hybrid fuzzy AHP-PROMETHEE decision support system for machine tool selection in flexible manufacturing cell. Journal of Intelligent Manufacturing, 23, 2137–2149. Vinodh, S., Jayakrishna, K., Kumar, V., & Dutta, R. (2014). Development of decision support system for sustainability evaluation: A case study. Clean Technologies and Environmental Policy, 16(1), 163–174. Vitanov, V., Tjahjono, B., & Marghalany, I. (2007). A decision support tool to facilitate the design of cellular manufacturing layouts. Computers & Industrial Engineering, 52, 380–403. Wazed, M., Ahmed, S., & Yusoff, N. (2009). Uncertainty factors in real manufacturing environment. Australian Journal of Basic and Applied Sciences, 3(2), 342–351. Winter, M., Li, W., Kara, S., & Herrmann, C. (2013). Determining optimal process parameters to increase the eco-efficiency of grinding processes. Journal of Cleaner Production, 66(1), 644–654. Yam, R., Tse, P., Li, L., & Tu, P. (2001). Intelligent predictive decision support system for condition-based maintenance. International Journal of Advanced Manufacturing Technology, 17, 383–391. Yurdakul, M., Arslan, E., Tansel, Y., & Turkbas, O. (2014). A decision support system for selection of net-shape primary manufacturing processes. International Journal of Production Research, 52(5), 1528–1541. Zeballos, L. (2010). A constraint programming approach to tool allocation and production scheduling in flexible manufacturing systems. Robotics and Computer-Integrated Manufacturing, 26, 725–743. Zhu, Q., Lujia, F., Mayyas, A., Omar, M., Al-Hammadi, Y., & Saleh, S. (2014). Production energy optimization using low dynamic programming, a decision support tool for sustainable manufacturing. Journal of Cleaner Production. doi:10.1016/j.jclepro.2014.02.066.