Developing Test Methods for Compression after Lightning Strikes

Springer Science and Business Media LLC - Tập 30 - Trang 539-556 - 2023
Xiaodong Xu1,2, Scott L. J. Millen3, Juhyeong Lee4, Gasser Abdelal3, Daniel Mitchard5, Michael R. Wisnom2, Adrian Murphy3
1University of the West of England, Bristol, England, UK
2Bristol Composites Institute, University Walk, Bristol, England, UK
3School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, UK
4Department of Mechanical and Aerospace Engineering, Utah State University, Logan, USA
5Advanced High Voltage Engineering Research Centre, School of Engineering, Cardiff University, Wales, UK

Tóm tắt

Research into residual strength after lightning strike is increasing within the literature. However, standard test methods for measuring residual compressive strength after lightning strikes do not exist. For the first time, a systematic experimental study is undertaken to evaluate modifications necessary to standard Compression After Impact (CAI) specimen geometry and test jig design to induce specimen failure at the lightning damage region. Four laboratory generated lightning strike currents with peak amplitudes ranging from 25 to 100 kA have been studied. Test set-up modifications were made considering the scale of the lightning damage and its potential proximity to specimen edges. Specimen geometry and anti-buckling guides were adjusted for each peak current to induce specimen failure at the lightning damage. The Compression After Lightning (CAL) strength was 28% lower than the pristine CAI strength even at a relatively low peak current of 25 kA. This study shows that the standard CAI test setup has the potential for CAL application, however, careful modifications are required depending on the peak amplitude of the applied lightning current waveform.

Tài liệu tham khảo

SAE Aerospace.: Aircraft Lightning Environment and Related Test Waveforms (2013). https://doi.org/10.4271/ARP5412B EUROCAE.: Aircraft Lightning Environment and Related Test Waveforms 2103 Haigh, S.: Impulse Effects during Simulated Lightning Attachments to Lightweight Composite Panels. International Aerospace and Ground Conf. on Lightning and Static Electricity (2007) Feraboli, P., Miller, M.: Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike. Compos. Part A Appl. Sci. Manuf. 40, 954–67 (2009). https://doi.org/10.1016/j.compositesa.2009.04.025. Feraboli, P., Kawakami, H.: Damage of Carbon/Epoxy Composite Plates Subjected to Mechanical Impact and Simulated Lightning. J Aircr 47, 999–1012 (2010). https://doi.org/10.2514/1.46486 Hirano, Y., Katsumata, S., Iwahori, Y., Todoroki, A.: Artificial lightning testing on graphite/epoxy composite laminate. Compos. Part A Appl. Sci. Manuf. 41, 1461–70 (2010). https://doi.org/10.1016/j.compositesa.2010.06.008 Kawakami, H.: Lightning Strike Induced Damage Mechanisms of Carbon Fiber Composites. University of Washington (2011) Muñoz, R., Delgado, S., González, C., López-Romano, B., Wang, D.-Y., LLorca, J.: Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials. Appl. Compos. Mater. 21, 149–64 (2014). https://doi.org/10.1007/s10443-013-9377-9 Lee, J., Gharghabi, P., Boushab, D., Ricks, T.M., Lacy, T.E., Pittman, C.U., et al.: Artificial lightning strike tests on PRSEUS panels. Compos. B Eng. 154, 467–77 (2018). https://doi.org/10.1016/j.compositesb.2018.09.016 Mitchard, D., Widger, P., Clark, D., Carr, D., Haddad, A.: Optical emission spectra of high current and high voltage generated arcs representing lightning. Appl. Phys. Lett. 114, 164103 (2019). https://doi.org/10.1063/1.5092875 Boushab, D., Gharghabi, P., Lee, J., Lacy, T.E., Pittman, C.U., Mazzola, M.S., et al.: Lightning arc channel effects on surface damage development on a PRSEUS composite panel: An experimental study. Compos. B Eng. 224, 109217 (2021). https://doi.org/10.1016/j.compositesb.2021.109217 Hirano, Y., Yokozeki, T., Ishida, Y., Goto, T., Takahashi, T., Qian, D., et al.: Lightning damage suppression in a carbon fiber-reinforced polymer with a polyaniline-based conductive thermoset matrix. Compos. Sci. Technol. 127, 1–7 (2016). https://doi.org/10.1016/j.compscitech.2016.02.022 Guo, Y., Xu, Y., Zhang, L., Wei, X., Dong, Q., Yi, X., et al.: Implementation of fiberglass in carbon fiber composites as an isolation layer that enhances lightning strike protection. Compos. Sci. Technol. 174, 117–24 (2019). https://doi.org/10.1016/j.compscitech.2019.02.023 Wang, B., Ming, Y., Zhu, Y., Yao, X., Ziegmann, G., Xiao, H., et al.: Fabrication of continuous carbon fiber mesh for lightning protection of large-scale wind-turbine blade by electron beam cured printing. Addit Manuf. 31, 100967 (2020). https://doi.org/10.1016/j.addma.2019.100967 Xia, Q., Zhang, Z., Mei, H., Liu, Y., Leng, J.: A double-layered composite for lightning strike protection via conductive and thermal protection. Compos. Commun. 21, 100403 (2020). https://doi.org/10.1016/j.coco.2020.100403 Yousefpour, K., Lin, W., Wang, Y., Park, C.: Protection of Carbon Fiber Reinforced Polymer Matrix (CFRP) Composite Laminate Against Lightning Strike Using Nano-Fillers. IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), 35–38 (2020). https://doi.org/10.1109/CEIDP49254.2020.9437508 Lin, W., Jony, B., Yousepour, K., Wang, Y., Park, C., Roy, S.: Effects of Graphene Nanoplatelets on the Lightning Strike Damage Response of Carbon Fiber Epoxy Composite Laminates. American Society for Composites 2020, Lancaster, PA: DEStech Publications, Inc. (2020). https://doi.org/10.12783/asc35/34878 Dong, Q., Wan, G., Guo, Y., Zhang, L., Wei, X., Yi, X., et al.: Damage analysis of carbon fiber composites exposed to combined lightning current components D and C. Compos. Sci. Technol. 179, 1–9 (2019). https://doi.org/10.1016/j.compscitech.2019.04.030 Wang, F.S., Yu, X.S., Jia, S.Q., Li, P.: Experimental and numerical study on residual strength of aircraft carbon/epoxy composite after lightning strike. Aerosp. Sci. Technol. 75, 304–14 (2018). https://doi.org/10.1016/j.ast.2018.01.029 Shah, S.Z.H., Lee, J.: Stochastic lightning damage prediction of carbon/epoxy composites with material uncertainties. Compos. Struct. 282, 115014 (2022). https://doi.org/10.1016/j.compstruct.2021.115014 Lee, J., Lacy Jr., T.E., Pittman Jr., C.U.: Coupled thermal electrical and mechanical lightning damage predictions to carbon/epoxy composites during arc channel shape expansion. Compos. Struct. 255, 112912 (2021). https://doi.org/10.1016/j.compstruct.2020.112912 Foster, P., Abdelal, G., Murphy, A.: Quantifying the Influence of Lightning Strike Pressure Loading on Composite Specimen Damage. Appl. Compos. Mater. 26, 115–137 (2019). https://doi.org/10.1007/s10443-018-9685-1 Li, Y., Sun, J., Li, S., Tian, X., Yao, X., Wang, B., et al.: An experimental study of impulse-current-induced mechanical effects on laminated carbon fibre-reinforced polymer composites. Compos. B Eng. 225, 109245 (2021). https://doi.org/10.1016/j.compositesb.2021.109245 Lee, J., Lacy, T.E., Pittman, C.U.: Lightning mechanical damage prediction in carbon/epoxy laminates using equivalent air blast overpressure. Compos. B Eng. 212, 108649 (2021). https://doi.org/10.1016/j.compositesb.2021.108649 Millen, S.L.J., Murphy, A., Catalanotti, G., Abdelal, G.: Coupled Thermal-Mechanical Progressive Damage Model with Strain and Heating Rate Effects for Lightning Strike Damage Assessment. Appl. Compos. Mater. 26, 1437–1459 (2019). https://doi.org/10.1007/s10443-019-09789-z Millen, S.L.J., Murphy, A.: Understanding the influence of test specimen boundary conditions on material failure resulting from artificial lightning strike. Eng. Fail. Anal. 114, 104577 (2020). https://doi.org/10.1016/j.engfailanal.2020.104577 Harrell, T.M., Madsen, S.F., Thomsen, O.T., Dulieu-Barton, J.M.: On the Effect of Dielectric Breakdown in UD CFRPs Subjected to Lightning Strike Using an Experimentally Validated Model. Appl. Compos. Mater. 29, 1321–1348 (2022). https://doi.org/10.1007/s10443-022-10014-7 Hirano, Y., Katsumata, S., Iwahori, Y., Todoroki, A.: Artificial lightning testing on graphite/epoxy composite laminate. Compos. Part A Appl. Sci. Manuf. 41, 1461–1470 (2010). https://doi.org/10.1016/j.compositesa.2010.06.008 Lee, J., Soutis, C.: Prediction of Impact-Induced Fibre Damage in Circular Composite Plates. Appl. Compos. Mater. 12, 109–131 (2005). https://doi.org/10.1007/s10443-004-7767-8 Prentzias, V., Tsamasphyros, G.J.: Simulation of Low Velocity Impact on CFRP Aerospace Structures: Simplified Approaches, Numerical and Experimental Results. Appl. Compos. Mater. 26, 835–856 (2019). https://doi.org/10.1007/s10443-018-9752-7 Bian, T., Lyu, Q., Fan, X., Zhang, X., Li, X., Guo, Z.: Effects of Fiber Architectures on the Impact Resistance of Composite Laminates Under Low-Velocity Impact. Appl. Compos. Mater. 29, 1125–1145 (2022). https://doi.org/10.1007/s10443-022-10009-4 Featherston, C.A., Eaton, M.J., Evans, S.L., Holford, K.M., Pullin, R., Cole, M.: Development of a Methodology to Assess Mechanical Impulse Effects Resulting from Lightning Attachment to Lightweight Aircraft Structures. Appl. Mech. Mater. 24–25, 129–134 (2010). https://doi.org/10.4028/www.scientific.net/AMM.24-25.129 Soulas, F., Espinosa, C., Lachaud, F., Guinard, S., Lepetit, B., Revel, I.: Equivalent Impact Set-up for Lightning Strike Damage on Composite Coupons. International Conference on Composite Materials, Copenhagen, Denmark (2015) Wang, F.S., Yu, X.S., Jia, S.Q., Li, P.: Experimental and numerical study on residual strength of aircraft carbon/epoxy composite after lightning strike. Aerosp. Sci. Technol. 75, 304–314 (2018). https://doi.org/10.1016/j.ast.2018.01.029 Wang, F.S., Ding, N., Liu, Z.Q., Ji, Y.Y., Yue, Z.F.: Ablation damage characteristic and residual strength prediction of carbon fiber/epoxy composite suffered from lightning strike. Compos. Struct. 117, 222–233 (2014). https://doi.org/10.1016/j.compstruct.2014.06.029 Kumar, V., Yokozeki, T., Okada, T., Hirano, Y., Goto, T., Takahashi, T., et al.: Polyaniline-based all-polymeric adhesive layer: An effective lightning strike protection technology for high residual mechanical strength of CFRPs. Compos. Sci. Technol. 172, 49–57 (2019). https://doi.org/10.1016/j.compscitech.2019.01.006 Kumar, V., Yokozeki, T., Okada, T., Hirano, Y., Goto, T., Takahashi, T., et al.: Effect of through-thickness electrical conductivity of CFRPs on lightning strike damages. Compos. Part A Appl. Sci. Manuf. 114, 429–438 (2018). https://doi.org/10.1016/j.compositesa.2018.09.007 Guo, Y., Xu, Y., Zhang, L., Wei, X., Dong, Q., Yi, X., et al.: Implementation of fiberglass in carbon fiber composites as an isolation layer that enhances lightning strike protection. Compos. Sci. Technol. 174, 117–124 (2019). https://doi.org/10.1016/j.compscitech.2019.02.023 Kumar, V., Yeole, P.S., Hiremath, N., Spencer, R., Masum Billah, K.M., Vaidya, U., et al.: Internal Arcing and Lightning Strike Damage in Short Carbon Fiber Reinforced Thermoplastic Composites. Compos. Sci. Technol. 112490 (2020). https://doi.org/10.1016/j.compscitech.2020.108525 Wang, B., Ming, Y., Zhu, Y., Yao, X., Ziegmann, G., Xiao, H., et al.: Fabrication of continuous carbon fiber mesh for lightning protection of large-scale wind-turbine blade by electron beam cured printing. Addit. Manuf. 31, 100967 (2020). https://doi.org/10.1016/j.addma.2019.100967 Yamashita, S., Hirano, Y., Sonehara, T., Takahashi, J., Kawabe, K., Murakami, T.: Residual mechanical properties of carbon fibre reinforced thermoplastics with thin-ply prepreg after simulated lightning strike. Compos. Part A Appl. Sci. Manuf. 101, 185–94 (2017). https://doi.org/10.1016/j.compositesa.2017.06.002 Kawakami, H., Feraboli, P.: Lightning strike damage resistance and tolerance of scarf-repaired mesh-protected carbon fiber composites. Compos. Part A Appl. Sci. Manuf. 42, 1247–1262 (2011). https://doi.org/10.1016/j.compositesa.2011.05.007 Hirano, Y., Yokozeki, T., Ishida, Y., Goto, T., Takahashi, T., Qian, D., et al.: Lightning damage suppression in a carbon fiber-reinforced polymer with a polyaniline-based conductive thermoset matrix. Compos. Sci. Technol. 127, 1–7 (2016). https://doi.org/10.1016/j.compscitech.2016.02.022 Xia, Q., Zhang, Z., Mei, H., Liu, Y., Leng, J.: A double-layered composite for lightning strike protection via conductive and thermal protection. Compos. Commun. 21, 100403 (2020). https://doi.org/10.1016/j.coco.2020.100403 Yin, J.J., Li, S.L., Yao, X.L., Chang, F., Li, L.K., Zhang, X.H.: Lightning Strike Ablation Damage Characteristic Analysis for Carbon Fiber/Epoxy Composite Laminate with Fastener. Appl. Compos. Mater. 23, 821–837 (2016). https://doi.org/10.1007/s10443-016-9487-2 Wang, F.S., Ding, N., Liu, Z.Q., Ji, Y.Y., Yue, Z.F.: Ablation damage characteristic and residual strength prediction of carbon fiber/epoxy composite suffered from lightning strike. Compos. Struct. 117, 222–33 (2014). https://doi.org/10.1016/j.compstruct.2014.06.029 Kumar, V., Yokozeki, T., Okada, T., Hirano, Y., Goto, T., Takahashi, T., et al.: Effect of through-thickness electrical conductivity of CFRPs on lightning strike damages. Compos. Part A Appl. Sci. Manuf. 114, 429–38 (2018). https://doi.org/10.1016/j.compositesa.2018.09.007 Kumar, V., Yokozeki, T., Okada, T., Hirano, Y., Goto, T., Takahashi, T., et al.: Polyaniline-based all-polymeric adhesive layer: An effective lightning strike protection technology for high residual mechanical strength of CFRPs. Compos. Sci. Technol. 172, 49–57 (2019). https://doi.org/10.1016/j.compscitech.2019.01.006 Kumar, V., Yeole, P.S., Hiremath, N., Spencer, R., Billah, K.M.M., Vaidya, U., et al.: Internal arcing and lightning strike damage in short carbon fiber reinforced thermoplastic composites. Compos. Sci. Technol. 201, 108525 (2021). https://doi.org/10.1016/j.compscitech.2020.108525 Kawakami, H., Feraboli, P.: Lightning strike damage resistance and tolerance of scarf-repaired mesh-protected carbon fiber composites. Compos. Part A Appl. Sci. Manuf. 42, 1247–62 (2011). https://doi.org/10.1016/j.compositesa.2011.05.007 Abrate, S.: Impact on Laminated Composites: Recent Advances. Appl. Mech. Rev. 47, 517–544 (1994). https://doi.org/10.1115/1.3111065 McQuien, J.S., Hoos, K.H., Ferguson, L.A., Iarve, E.V., Mollenhauer, D.H.: Geometrically nonlinear regularized extended finite element analysis of compression after impact in composite laminates. Compos. Part A Appl. Sci. Manuf. 134, 105907 (2020). https://doi.org/10.1016/j.compositesa.2020.105907 Sun, X.C., Hallett, S.R.: Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study. Compos. Part A Appl. Sci. Manuf. 104, 41–59 (2018). https://doi.org/10.1016/j.compositesa.2017.10.026 Nettles, A.T., Scharber, L.: The Influence of GI and GII on the compression after impact strength of carbon fiber/epoxy laminates. J. Compos. Mater. 52, 991–1003 (2017). https://doi.org/10.1177/0021998317719567 Sonehara, T., Kusano, H., Tokuoka, N., Hirano, Y.: Visualization of lightning impulse current discharge on CFRP laminate. International Conference on Lightning Protection (ICLP) 2014, 835–839 (2014). https://doi.org/10.1109/ICLP.2014.6973239 Yousefpour, K., Chalaki, M.R., Lin, W., Haque, F., Wang, Y., Park, C.: The Impact of Lightning Channel Diameter on the Damage of Carbon Fiber Reinforced Polymer Matrix (CFRP) Composite Laminates. 2020 IEEE Electr. Insul. Conf. (EIC), 128–131 (2020). https://doi.org/10.1109/EIC47619.2020.9158586 Yousefpour, K., Lin, W., Wang, Y., Park, C.: Discharge and ground electrode design considerations for the lightning strike damage tolerance assessment of CFRP matrix composite laminates. Compos. B Eng. 198, 108226 (2020). https://doi.org/10.1016/j.compositesb.2020.108226 ASTM D7137/D7137M-05.: Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates. ASTM Book of Standards 15(03), 18 (2005). https://doi.org/10.1520/D7137_D7137M-05 Xu, X., Paul, A., Sun, X., Wisnom, M.R.: An experimental study of scaling effects in notched quasi-isotropic carbon/epoxy laminates under compressive loads. Compos. Part A Appl. Sci. Manuf. 137, 106029 (2020). https://doi.org/10.1016/j.compositesa.2020.106029 Wisnom, M.R., Hallett, S.R., Soutis, C.: Scaling Effects in Notched Composites. J. Compos. Mater. 44, 195–210 (2009). https://doi.org/10.1177/0021998309339865