Detumbling a Flexible Tumbling Target Using a Space Robot in Post-capture Phase
Tóm tắt
In recent years, the sustained growth of space launch missions has inevitably led to a rapid increase in space debris, which has attracted extensive attention to the capture and removal of space debris. This paper presents a new strategy for detumbling a flexible tumbling target in the post-capture phase using a flexible-base space robot (also called a chaser), which involves trajectory optimization and composite control of the chaser. Based on the dynamic equation of the combined system, the trajectories of the chaser base and the manipulator’s joints are parameterized by quintic polynomial curves, and then are simultaneously optimized for the collision avoidance of the combined system and the reduction of panel deformation, control energy, and mission duration. The Pareto-optimal solutions of the optimization problem are obtained by the multi-objective particle swarm optimization (MOPSO) algorithm. The composite control scheme, composed of a trajectory tracking controller and a vibration suppression controller, is used for the chaser to detumble the target along the planned trajectories, stabilize its base attitude, and eliminate the residual vibration of the flexible panels. Two representative cases are used to verify the effectiveness and robustness of the proposed detumbling strategy for the target with parameter uncertainties.
Tài liệu tham khảo
Mark, S., Kamath, S.: Review of active space debris removal methods. Space Policy 47, 194 (2019). https://doi.org/10.1016/j.spacepol.2018.12.005
Shan, M., Guo, J., Gill, E.: Review and comparison of active space debris capturing and removal methods. Prog. Aerosp. Sci. 80, 18 (2016). https://doi.org/10.1016/j.paerosci.2015.11.001
Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68, 1 (2014). https://doi.org/10.1016/j.paerosci.2014.03.002
Hakima, H., Emami, M.R.: Deorbiter CubeSat system engineering. J. Astron. Sci. 67, 1600 (2020). https://doi.org/10.1007/s40295-020-00220-5
Inaba, N., Oda, M.: Autonomous satellite capture by a space robot: world first on-orbit experiment on a Japanese robot satellite ETS-VII. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation, vol. 2, pp. 1169–1174. IEEE (2000). https://doi.org/10.1109/ROBOT.2000.844757
Friend, R.B.: Orbital Express program summary and mission overview. In: Proc. SPIE 6958, Sensors and Systems for Space Applications II, 695803. SPIE (2008). https://doi.org/10.1117/12.783792
Liu, Y., Yu, Z., Liu, X., Cai, G.: Active detumbling technology for high dynamic non-cooperative space targets. Multibody Sys. Dyn. 47(1), 21 (2019). https://doi.org/10.1007/s11044-019-09675-3
Siciliano, B., Sciavicco, L., Villani, G., Oriolo, G.: Robotics Modelling, Planning and Control. Springer, London (2009). https://doi.org/10.1007/978-1-84628-642-1
Rong, B., Rui, X., Tao, L., Wang, G.: Theoretical modeling and numerical solution methods for flexible multibody system dynamics. Nonlinear Dyn. 98, 1519 (2019). https://doi.org/10.1007/s11071-019-05191-3
Basmadji, F., Seweryn, K., Sasiadek, J.: Space robot motion planning in the presence of nonconserved linear and angular momenta. Multibody Sys. Dyn. 50, 71 (2020). https://doi.org/10.1007/s11044-020-09753-x
James, F., Shah, S., Singh, A., Krishna, K., Misra, A.: Reactionless maneuvering of a space robot in precapture phase. J. Guid. Control. Dyn. 39(10), 2419 (2016). https://doi.org/10.2514/1.G001828
Hu, J., Wang, T.: Minimum base attitude disturbance planning for a space robot during target capture. ASME J. Mech. Robot. 10(5), 051002 (2018). https://doi.org/10.1115/1.4040435
Wang, M., Luo, J., Zheng, L., Yuan, J., Walter, U.: Generate optimal grasping trajectories to the end-effector using an improved genetic algorithm. Adv. Space Res. 66(7), 1803 (2020). https://doi.org/10.1016/j.asr.2020.06.022
Seddaoui, A., Saaj, C.: Combined nonlinear \(h_{\infty }\) controller for a controlled-floating space robot. J. Guid. Control. Dyn. 42(8), 1878 (2019). https://doi.org/10.2514/1.G003811
Zhou, Z., Zhang, Y., Zhou, D.: Robust prescribed performance tracking control for free-floating space manipulators with kinematic and dynamic uncertainty. Aerosp. Sci. Technol. 71, 568 (2017). https://doi.org/10.1016/j.ast.2017.10.013
Muralidharan, V., Emami, M.R.: Rendezvous and attitude synchronization of a space manipulator. J. Astronaut. Sci. 66, 100 (2019). https://doi.org/10.1007/s40295-019-00162-7
Wang, M., Luo, J., Yuan, J., Walter, U.: Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target. Nonlinear Dyn. 92, 1023 (2018). https://doi.org/10.1007/s11071-018-4106-4
Aghili, F.: Optimal trajectories and robot control for detumbling a non-cooperative satellite. J. Guid. Control. Dyn. 43(5), 981 (2020). https://doi.org/10.2514/1.G004758
Gangapersaud, R., Liu, G., de Ruiter, A.: Detumbling a non-cooperative space target with model uncertainties using a space manipulator. J. Guid. Control. Dyn. 42(4), 910 (2019). https://doi.org/10.2514/1.G003111
Zhan, B., Jin, M., Yang, G., Zhang, C.: A novel strategy for space manipulator detumbling a non-cooperative target with collision avoidance. Adv. Space Res. 66(4), 785 (2020). https://doi.org/10.1016/j.asr.2020.05.045
Zhao, Q., Duan, G.: Integrated design of trajectory tracking and inertia property identification for post-capture of non-cooperative target. Aerosp. Sci. Technol. 95, 105437 (2019). https://doi.org/10.1016/j.ast.2019.105437
Huang, P., Wang, M., Meng, Z., Zhang, F., Liu, Z.: Attitude takeover control for post-capture of target spacecraft using space robot. Aerosp. Sci. Technol. 51, 171 (2016). https://doi.org/10.1016/j.ast.2016.02.006
She, Y., Sun, J., Li, S., Li, W., Song, T.: Quasi-model free control for the post-capture operation of a non-cooperative target. Acta Astronaut. 147, 59 (2018). https://doi.org/10.1016/j.actaastro.2018.03.041
Zhang, X., Xu, T., Wei, C.: Novel finite-time attitude control of postcapture spacecraft with input faults and quantization. Adv. Space Res. 65(1), 297 (2020). https://doi.org/10.1016/j.asr.2019.09.030
Hirano, D., Fujii, Y., Abiko, S., Lampariello, R., Nagaoka, K., Yoshida, K.: Vibration suppression control of a space robot with flexible appendage based on simple dynamic model. In: IEEE International Conference on Intelligent Robots and Systems (IROS2013) (Tokyo, Japan, 2013), pp. 789–794.
Xu, W., Meng, D., Chen, Y., Qian, H., Xu, Y.: Dynamics modeling and analysis of a flexible-base space robot for capturing larger flexible spacecraft. Multibody Sys. Dyn. 32, 357 (2014). https://doi.org/10.1007/s11044-013-9389-0
Meng, D., Wang, X., Xu, W., Liang, B.: Space robots with flexible appendages: dynamic modeling, coupling measurement, and vibration suppression. J. Sound Vib. 396, 30 (2017). https://doi.org/10.1016/j.jsv.2017.02.039
Stolfi, A., Gasbarri, P., Satatini, M.: A parametric analysis of a controlled deployable space manipulator for capturing a non-cooperative flexible satellite. Acta Astronaut. 148, 317 (2018). https://doi.org/10.1016/j.actaastro.2018.04.028
Stolfi, A., Gasbarri, P., Misra, A.: A two-arm flexible space manipulator system for post-grasping manipulation operations of a passive target object. Acta Astronaut. 175, 66 (2020). https://doi.org/10.1016/j.actaastro.2020.04.045
Yu, Z., Gao, M., Cai, G.: Active control of a 6-DOF space robot with flexible panels using singular perturbation method. J. Astronaut. Sci. 66, 83 (2019). https://doi.org/10.1007/s40295-019-00166-3
Singh, S., Mooij, E.: Robust control for active debris removal of a large flexible space structure. In: AIAA Scitech 2020 Forum, AIAA 2020-2077. (2020). https://doi.org/10.2514/6.2020-2077
Shabana, A.: Flexible multibody dynamics: review of past and recent developments. Multibody Sys. Dyn. 1, 189 (1997). https://doi.org/10.1023/A:1009773505418
Liu, Y., Liu, X., Cai, G., Chen, J.: Trajectory planning and coordination control of a space robot for detumbling a flexible tumbling target in post-capture phase. Multibody Sys. Dyn. 52, 281 (2020). https://doi.org/10.1007/s11044-020-09774-6
Shen, Y., Jia, Q., Chen, G., Wang, Y., Sun, H.: Study of rapid collision detection algorithm for manipulator. In: 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), pp. 934–938. IEEE (2015). https://doi.org/10.1109/ICIEA.2015.7334244
Chu, X., Hu, Q., Zhang, J.: Path planning and collision avoidance for a multi-arm space maneuverable robot. IEEE Trans. Aerosp. Electron. Syst. 54(1), 217 (2018). https://doi.org/10.1109/TAES.2017.2747938
Ericson, C.: Real-Time Collision Detection. CRC Press, Boca Raton (2005)
Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, pp. 120-127. IEEE (2007). https://doi.org/10.1109/SIS.2007.368035
Coello, C., Lechuga, M.: In Proceedings of the IEEE Congress on Computational Intelligence (Honolulu, USA, 2002), pp. 1051–1056. https://doi.org/10.1109/CEC.2002.1004388
Coello, C., Pulido, G., Lechuga, M.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8, 256 (2004). https://doi.org/10.1109/TEVC.2004.826067
Sierra, M.R., Coello Coello, C.A.: Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol. 3410. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_35
Sanz, A., Etxebarria, V.: Experimental control of a two-dof flexible robot manipulator by optimal and sliding methods. J. Intell. Rob. Syst. 46, 95 (2006). https://doi.org/10.1007/s10846-006-9041-9