Detritus-based assemblage responses under salinity stress conditions in a disused aquatic artificial ecosystem

Springer Science and Business Media LLC - Tập 9 - Trang 1-9 - 2013
Fulvio Cerfolli1, Bruno Bellisario1, Corrado Battisti2
1Department of Ecological and Biological Sciences (DEB), Ichthyogenic Experimental Marine Centre (CISMAR), Tuscia University, Tarquinia, Italy
2‘Torre Flavia’ LTER (Long Term Environmental Research) Station, Environmental Service, Provincia di Roma, Rome, Italy

Tóm tắt

Despite the plethora of approaches, the sensitivity of the methods to measure the relationship between the abundance and biomass curves in stressed detritus-based ecosystems still remain to be refined. In this work, we report the comparison between biomass and abundance in a set of detritus-based macrozoobenthic assemblages located in six sampling pools with different salinity in an artificial aquatic ecosystem (disused Tarquinia Saltworks), using two diversity/dominance approaches (Abundance/Biomass Comparisons, or ABC, and Whittaker plots). We also evaluated the contribution of abundances and biomasses diversity (Simpson index) and nestedness, which measures the order by which macroinvertebrates colonized the detrital resource. The outputs obtained by both ABC curves and Whittaker plots highlight two different thresholds in assemblage structure: between about 44 and 50 practical salinity unit (psu) and between 50 and 87 psu, respectively. The first threshold was due to a turnover in taxon composition between assemblages, the second threshold (evidenced by Whittaker plots) was due to a change in taxon richness (lower in pools with higher salinity: i.e. > 50 psu). Moreover, a normal-shaped pattern in diversity (Simpson index) emerged, suggestive of an intermediate disturbance effect. The nested pattern did not show significant differences when considering the density and biomass of the sampled taxa, providing similar threshold of salinity in the relative contribution of macrozoobenthos on nestedness. The use of detailed (ABC and Whittaker plots) and macroscopic (Simpson index and nestedness) approaches is proposed to identify thresholds in the structuring and functioning of detritus-based community of disused aquatic ecosystems: in particular, the inclusion of the parameter of biomass (scarcely utilized in community-based research) appears crucial. The responses of macrozoobenthic assemblages to the salinity stress conditions, in term of abundance and biomass, using a detritus food source (Phragmites australis leaves), may also highlight, by comparing macroscopic and detailed approaches, structuring and functioning patterns to consider for the management of disused artificial ecosystems.

Tài liệu tham khảo

Williams WD: Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia. 1998, 381: 191-201. 10.1023/A:1003287826503. Dobson M, Frid C: Ecology of aquatic systems. 2009, Oxford: Oxford University Press Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, Hastings A, Johnson NC, McCann KS, Melville K, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH: Detritus, trophic dynamics and biodiversity. Ecol Lett. 2004, 7: 584-600. 10.1111/j.1461-0248.2004.00606.x. Belgrano A, Scharler UM, Dunne J, Ulanowicz RE: Aquatic food webs: an ecosystem approach. 2005, Oxford: Oxford University Press Moore JC, de Ruiter PC: Energetic food webs: an analysis of real and model ecosystems. 2012, Oxford: Oxford University Press Velasco J, Millán A, Hernández J, Gutiérrez-Cánovas C, Abellan P, Sanchez-Fernandez D, Ruiz M: Response of biotic communities to salinity changes in a Mediterranean hypersaline stream. Saline Systems. 2006, 2: 12-10.1186/1746-1448-2-12. Bellisario B, Cerfolli F, Nascetti G: Spatial network structure and robustness of detritus-based communities in a patchy environment. Ecol Res. 2010, 25: 813-821. 10.1007/s11284-010-0711-5. Fauth JE, Bernardo J, Camara M, Rasetarits WJ, Van Buskirk J, McCollum SA: Simplifying the jargon of community ecology: a conceptual approach. Am Nat. 1996, 147: 282-286. 10.1086/285850. Wiens JA: The ecology of bird communities, Vol 2, processes and variations. 1989, Cambridge: Cambridge University Press Krebs CJ: Ecology: the experimental analysis of distribution and abundance. 2001, London: Benjamin-Cummings Pub Co, 5 Magurran AE: Measuring biological diversity. 2004, New York: Blackwell Lambshead PJD, Platt HM, Shaw KM: The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J Nat Hist. 1983, 17: 859-874. 10.1080/00222938300770671. Warwick RM: A new method for detecting pollution effects on marine macro-benthic communities. Mar Biol. 1986, 92: 557-562. 10.1007/BF00392515. Warwick RM, Clarke KR: Relearning the ABC-taxonomic changes and abundance biomass relationships in disturbed benthic communities. Mar Biol. 1994, 118: 739-744. 10.1007/BF00347523. Dornelas M, Soykan CU, Ugland KI: Biodiversity and disturbance. Biological diversity: frontiers in measurements and assessments. Edited by: Magurran A, McGill BJ. 2011, Oxford, New York: Oxford University Press, 237-251. Ives AR, Carpenter SR: Stability and diversity of ecosystems. Science. 2007, 317: 58-62. 10.1126/science.1133258. Diamond JM: Assembly of species communities. Ecology and evolution of communities. Edited by: Cody ML, Diamond JM. 1975, Cambridge, Massachusetts, USA: Harvard Univ. Press, 342-444. Bascompte J, Jordano P, Melián CJ, Olesen JM: The nested assembly of plant animal mutualistic networks. Proc Natl Acad Sci U S A. 2003, 100: 9383-9387. 10.1073/pnas.1633576100. Atmar W, Patterson BD: The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia. 1993, 96: 373-382. 10.1007/BF00317508. Patterson BD, Atmar W: Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol J Linnean Soc. 1986, 28: 65-82. 10.1111/j.1095-8312.1986.tb01749.x. Almeida-Neto M, Guimarães PR, Lewinsohn TM: On nestedness analyses: rethinking matrix temperature and anti-nestedness. Oikos. 2007, 116: 716-722. 10.1111/j.0030-1299.2007.15803.x. Leibold MA, Mikkelson GM: Coherence, species turnover, and boundary clumping: elements of meta-community structure. Oikos. 2002, 97: 237-250. 10.1034/j.1600-0706.2002.970210.x. Lewinsohn TM, Prado PI, Jordano P, Bascompte J, Olesen JM: Structure in plant–animal interaction assemblages. Oikos. 2006, 113: 174-184. 10.1111/j.0030-1299.2006.14583.x. De Angelis DL: Dynamics of nutrient cycling and food webs. 1992, New York: Chapman and Hall Meire PM, Dereu J: Use of the abundance/biomass comparison method for detecting environmental stress: some considerations based on intertidal macrozoobenthos and bird communities. J Appl Ecol. 1990, 27: 210-223. 10.2307/2403579. Penczak T, Kruk A: Applicability of the abundance/biomass comparison method for detecting human impact on fish populations in the Pilica river. Pol Fish Res. 1999, 39: 229-240. 10.1016/S0165-7836(98)00201-X. Magurran AE, Phillip SAT: Implications of species loss in freshwater fish assemblages. Ecography. 2001, 24: 645-650. 10.1034/j.1600-0587.2001.240603.x. Benassi G, Battisti C, Luiselli L: Applying abundance/biomass comparisons in breeding bird assemblages of a set of remnant wetlands in central Italy. J Mediterr Ecol. 2009, 10: 13-18. Prete S, Battisti C, Marini F, Ciucci P: Applying abundance/biomass comparisons on a small mammal assemblage from Barn owl (Tyto alba) pellets (Mount Soratte, central Italy): a cautionary note. Rend Fis Acc Lincei. 2012, 23: 349-354. 10.1007/s12210-012-0183-3. Niyogi DK, Lewis WM, McKnight DM: Effects of stress from mine drainage on diversity, biomass, and function of primary producers in mountain streams. Ecosystems. 2002, 5: 554-567. Kominosky J, Pringle C: Resource–consumer diversity: testing the effects of leaf litter species diversity on stream macroinvertebrate communities. Freshw Biol. 2009, 54: 1461-1473. 10.1111/j.1365-2427.2009.02196.x. Bellisario B, Cerfolli F, Nascetti G: The interplay between network structure and functioning of detritus-based communities in patchy aquatic environment. Aquat Ecol. 2012, 46: 431-441. 10.1007/s10452-012-9412-1. Pimm SL: Food webs. 1982, London (UK): Chapman and Hall Payne WJ: Energy yields and growth of heterotrophs. Annu Rev Microbiol. 1970, 24: 17-52. 10.1146/annurev.mi.24.100170.000313. Vignes F, Fedele M, Pinna M, Mancinelli G, Basset A: Variability of lekanesphaera monodi metabolic rates with habitat trophic status. Acta Oecol. 2012, 41: 58-64. Dytham C: Choosing and using statistic. 2011, Wiley-Blackwell, UK: A Biologist’s guide Selva N, Fortuna MA: The nested structure of a scavenger community. Proc R Soc B. 2007, 274: 1101-1108. 10.1098/rspb.2006.0232. Galeano J, Pastor JM, Iriondo JM: Weighted-interaction nestedness estimator (WINE): a new estimator to calculate over frequency matrices. Environ Model Softw. 2009, 24: 1342-1346. 10.1016/j.envsoft.2009.05.014. Corso G, de Araujo AIL, de Almeida AM: A new nestedness estimator in community networks. arXiv. 2008, 0803.0007v1 Ulrich W, Almeida-Neto M, Gotelli NJ: A consumer’s guide to nestedness analysis. Oikos. 2009, 118: 3-17. 10.1111/j.1600-0706.2008.17053.x. R Development Core Team: R: a language and environment for statistical computing. 2009, Vienna, Austria: R Foundation for Statistical Computing Anderson MJ: A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26: 32-46. R Development Core Team: R: a language and environment for statistical computing. 2011, Vienna, Austria: R Foundation for Statistical Computing Connell JH: Diversity in tropical rain forests and coral reefs. Science. 1978, 199: 1302-1310. 10.1126/science.199.4335.1302. Collins SL, Glenn SM: Intermediate disturbance and its relationship to within and between-patch dynamics. New Zeal J Ecol. 1997, 21: 103-110. Bellisario B, Novelli C, Angeletti D, Cerfolli F, Cimmaruta R, Nascetti G: The ecological restoration of Tarquinia saltern drives temporal changes in benthic community structure. Transitional Waters Bulletin. 2010, 4: 105-114. Alemanno S, Mancinelli G, Basset A: Detritus processing in Tri-trophic food chains: a modelling approach. Internat Rev Hydrobiol. 2007, 92: 103-116. 10.1002/iroh.200510952. Williams WD, Boulton AJ, Taaffe RG: Salinity as a determinant of salt lake fauna: a question of scale. Hydrobiologia. 1990, 197: 257-266. 10.1007/BF00026955. Magurran AE: Biodiversity in the context of ecosystem function. Marine biodiversity & ecosystem functioning - frameworks, methodologies and integration. Edited by: Solan M, Aspden RJ, Paterson DM. 2012, Oxford: Oxford University Press, 16-23. Bellisario B, Carere C, Cerfolli F, Angeletti D, Nascetti G, Cimmarura R: Infaunal macrobenthic community dynamics in a manipulated hyperhaline ecosystem: a long term study. Aquat Biosyst. 2013, 9: 20-10.1186/2046-9063-9-20.