Detonation onset following shock wave focusing

Acta Astronautica - Tập 135 - Trang 114-130 - 2017
Н.Н. Смирнов1,2,3, O. G. Penyazkov1,4, K. L. Sevrouk4, В. Ф. Никитин1,2, Л.И. Стамов1,2,3, V.V. Tyurenkova1,3
1LLC “Center for Numerical Modeling”, Zelenograd 124482, Moscow, Russia
2Moscow Lomonosov State University, Moscow, 119992, Russia
3Scientific Research Institute for System Analysis of Russian Academy of Sciences, Moscow 117218, Russia
4Lykov’s Heat and Mass Transfer Institute of National Academy of Science of Belarus, P.Brovki 15, Minsk, Belarus

Tóm tắt

Từ khóa


Tài liệu tham khảo

CHEMKIN, A software package for the analysis of gas-phase chemical and plasma kinetics, CHE-036-1, Chemkin Collection Release 3.6, Reaction Design, September 2000.

Marinov, 1998, An experimental and kinetic calculation of the promotion effect of hydrocarbons on the NO-NO2 conversion in a flow reactor, Proc. Combust. Inst., 27, 389, 10.1016/S0082-0784(98)80427-X

Kee, 1980

S. Browne, J. Ziegler, J.E. Shepherd, Numerical Solution Methods for Shock and Detonation Jump Conditions, GALCIT Report FM2006.006 July 2004-Revised August 29, 2008

S. Gordon, B.J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications I. Analysis, NASA RP-1311, October 1994

Z.G. Pozdnyakov, B.D. Rossi, Handbook of Industrial Explosives and Means of blasting. — M.: Nedra, 1977.

E.J. Orlova, Chemistry and Technology of High Explosives, Textbook For Universities, ed. 3-e, Rev. — L.: “Chemistry”, Leningrad branch, 1981, pp. 312.

Maas, 1988, Ignition process in hydrogen-oxygen mixtures, Combust. Flame, 74, 53, 10.1016/0010-2180(88)90086-7

Smirnov, 2014, Modeling and simulation of hydrogen combustion in engines, Int. J. Hydrog. Energy, 39, 1122, 10.1016/j.ijhydene.2013.10.097

Smirnov, 2014, Hydrogen fuel rocket engines simulation using LOGOS code, Int. J. Hydrog. Energy, 39, 10748, 10.1016/j.ijhydene.2014.04.150

Smirnov, 2014, Detonation engine fed by acetylene–oxygen mixture, Acta Astronaut., 104, 134, 10.1016/j.actaastro.2014.07.019

Programming Guide NVIDIA CUDA, 2014, 〈http://developer.nvidia.com/cuda-downloads〉.

Ferziger, 2002

van Leer, 1979, Towards the ultimate conservative difference scheme. A second order sequel to Godunov’s method, J. Com. Phys, 32, 101, 10.1016/0021-9991(79)90145-1

Liou, 1996, A Sequel to AUSM: AUSM, J. Comput. Phys., 129, 364, 10.1006/jcph.1996.0256

Fletcher, 1991, Computational Methods in Fluid Dynamics, 2

E.A. Novikov, L-stable (4,2)-method of fourth order to solve hard problems, VestnikSamGU – natural Science series, Samara, Russia, 2011B 8, 89, pp. 59–68

Koren, 1993, A robust upwind discretisation method for advection, diffusion and source terms, 117

Smirnov, 2008, Transient regimes of wave propagation in metastable systems, Combust Explosion Shock Waves, 44, 25, 10.1007/s10573-008-0080-3

Smirnov, 2010, Deflagration to detonation transition in gases in tubes with cavities, J. Eng. Phys. Thermophys., 83, 1287, 10.1007/s10891-010-0448-6

Smirnov, 2009, Investigation of Self-sustaining waves in metastable systems: deflagration-to-detonation transition, J. Propuls. Power, 25, 593, 10.2514/1.33078

Nikitin, 2009, Pulse detonation engines: technical approaches, Acta Astronaut., 64, 281, 10.1016/j.actaastro.2008.08.002

Wang, 2014, Induction for multiple rotating detonation waves in the hydrogen-oxygen mixture with tangential flow, Int. J. Hydrog. Energy

Heidari, 2014, Numerical simulation of flame acceleration and deflagration to detonation transition in hydrogen-air mixture, Int. J. Hydrog. Energy, 39, 21317, 10.1016/j.ijhydene.2014.10.066

Wu, 2014, Numerical investigations of the restabilization of hydrogen–air rotating detonation engines, Int. J. Hydrog. Energy, 39, 15803, 10.1016/j.ijhydene.2014.07.159

Phylippov, 2012, Fluid mechanics of pulse detonation thrusters, Acta Astronaut., 76, 115, 10.1016/j.actaastro.2012.02.007

Gwak, 2015, Deformable wall effects on the detonationof combustible gas mixture in a thin-walled tube, Int. J. Hydrog. Energy, 40, 3006, 10.1016/j.ijhydene.2014.12.127

Wang, 2015, Effect of equivalence ratio on the velocity of rotating detonation, Int. J. Hydrog. Energy, 40, 7949, 10.1016/j.ijhydene.2015.04.072

Sod, 1978, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27, 1, 10.1016/0021-9991(78)90023-2

Liska, 2003, Comparison of several difference schemes on 1d and 2d Test problems for the Euler equations, SIAM J. Sci. Comput., 25, 995, 10.1137/S1064827502402120

Smirnov, 2015, Accumulation of errors in numerical simulations of chemically reacting gas dynamics, Acta Astronaut., 117, 338, 10.1016/j.actaastro.2015.08.013

Martynenko, 2004, High-temperature ignition of hydrogen and air at high pressures downstream of the reflected shock wave, J. Eng. Phys. Thermophys., 77, 785, 10.1023/B:JOEP.0000045164.40205.6f

Penyazkov, 2005, Autoignition of propane-air mixtures behind reflected shock waves, Proc. Combust. Inst., 30, 1941, 10.1016/j.proci.2004.08.122