Deterministic implicit two-step Milstein methods for stochastic differential equations
Tài liệu tham khảo
Arnold, 1974
Bokor, 1997, On two-step methods for stochastic differential equations, Acta Cybern., 13, 197
Brugnano, 2000, Adams-type methods for the numerical solution of stochastic ordinary differential equations, BIT, 40, 451, 10.1023/A:1022363612387
Buckwar, 2006, Multistep methods for SDEs and their application to problems with small noise, SIAM J. Numer. Anal., 44, 779, 10.1137/040602857
Buckwar, 2006, Asymptotic mean-square stability of two-step methods for stochastic ordinary differential equations, BIT, 46, 261, 10.1007/s10543-006-0060-5
Denk, 1997, Adams methods for the efficient solution of stochastic differential equations with additive noise, Computing, 59, 153, 10.1007/BF02684477
Elaydi, 2005
Ewald, 2005, Numerical analysis of stochastic schemes in geophysics, SIAM J. Numer. Anal., 42, 2257, 10.1137/S0036142902418333
Gautschi, 1988
Kloeden, 1992
Milstein, 1995
Ren, 2020, Generalized two-step milstein methods for stochastic differential equations, Int. J. Comput. Math., 97, 1363, 10.1080/00207160.2019.1618846
Saito, 1996, Stability analysis of numerical schemes for stochastic differential equations, SIAM J. Numer. Anal., 33, 2254, 10.1137/S0036142992228409
Sickenberger, 2008, Mean-square convergence of stochastic multi-step methods with variable step-size, J. Comput. Appl. Math., 212, 300, 10.1016/j.cam.2006.12.014
Tian, 2001, Implicit Taylor methods for stiff stochastic differential equations, Appl. Numer. Math., 38, 167, 10.1016/S0168-9274(01)00034-4
Tocino, 2014, Two-step Milstein schemes for stochastic differential equations, Numer. Algorithms, 69, 643, 10.1007/s11075-014-9918-9