Determining the spectrum of the nonlinear local Lyapunov exponents in a multidimensional chaotic system

Ruiqiang Ding1,2, Jianping Li3, Baosheng Li2,4
1Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu University of Information Technology, Chengdu, China
2State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
3College of Global Change and Earth System Sciences, Beijing Normal University, Beijing, China
4University of Chinese Academy of Sciences, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barana, G., and I. Tsuda, 1993: A new method for computing Lyapunov exponents. Phys. Lett. A, 175, 421–427, doi: 10.1016/0375-9601(93)90994-B.

Björck, A., 1967: Solving linear least squares problems by Gram-Schmidt orthogonalization. BIT Numerical Mathematics, 7, 1–21, doi: 10.1007/BF01934122.

Björck, A., 1994: Numerics of Gram-Schmidt orthogonalization. Linear Algebra and its Applications, 197–198, 297–316, doi: 10.1016/0024-3795(94)90493-6.

Brown, R., P. Bryant, and H. D. I. Abarbanel, 1991: Computing the Lyapunov spectrum of a dynamical system from an observed time series. Phys. Rev. A, 43, 2787–2806, doi: 10.1103/Phys-RevA.43.2787.

Dalcher, A., and E. Kalnay, 1987: Error growth and predictability in operational ECMWF forecasts. Tellus A, 39, 474–491, doi: 10.3402/tellusa.v39i5.11774.

Ding, R. Q., and J. P. Li, 2007: Nonlinear finite-time Lyapunov exponent and predictability. Phys. Lett. A, 364, 396–400, doi: 10.1016/j.physleta.2006.11.094.

Ding, R. Q., J. P. Li, and K. J. Ha, 2008: Trends and interdecadal changes of weather predictability during 1950s–1990s. J. Geophys. Res., 113, D24112, doi: 10.1029/2008JD010404.

Ding, R. Q., J. P. Li, and K. H. Seo, 2010: Predictability of the Madden-Julian oscillation estimated using observational data. Mon. Wea. Rev., 138, 1004–1013, doi: 10.1175/2009MWR 3082.1.

Ding, R. Q., J. P. Li, and K. H. Seo, 2011: Estimate of the predictability of boreal summer and winter intraseasonal oscillations from observations. Mon. Wea. Rev., 139, 2421–2438, doi: 10.1175/2011MWR3571.1.

Ding, R. Q., P. J. Li, F. Zheng, J. Feng, and D. Q. Liu, 2016: Estimating the limit of decadal-scale climate predictability using observational data. Climate Dyn., 46, 1563–1580, doi: 10.1007/s00382-015-2662-6.

Duan, W. S., and M. Mu, 2009: Conditional nonlinear optimal perturbation: Applications to stability, sensitivity, and predictability. Science in China Series D: Earth Sciences, 52, 883–906, doi: 10.1007/s11430-009-0090-3.

Eckmann, J. P., and D. Ruelle, 1985: Ergodic theory of chaos and strange attractors. Reviews of Modern Physics, 57, 617–656, doi: 10.1103/RevModPhys.57.617.

Feng, G. L., and W. J. Dong, 2003: Evaluation of the applicability of a retrospective scheme based on comparison with several difference schemes. Chinese Physics, 12, 1076–1086, doi: 10.1088/1009-1963/12/10/307.

Fraedrich, K., 1987: Estimating weather and climate predictability on attractors. J. Atmos. Sci., 44, 722–728, doi: 10.1175/1520- 0469(1987)044〈0722:EWACPO〉2.0.CO;2.

Fraedrich, K., 1988: El Ni˜no/southern oscillation predictability. Mon. Wea. Rev., 116, 1001–1012, doi: 10.1175/1520-0493 (1988)116〈1001:ENOP〉2.0.CO;2.

Houtekamer, P. L., 1991: Variation of the predictability in a loworder spectral model of the atmospheric circulation. Tellus A, 43, 177–190, doi: 10.3402/tellusa.v43i3.11925.

Kalnay, E., and Z. Toth, 1995: The breeding method. Vol. I, Proceedings of the ECMWF seminar on predictability, 4–8 September 1995, ECMWF, Reading, UK, 69–82.

Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Doklady Akademiia Nauk SSSR, 30, 301–305.

Lacarra, J. F., and O. Talagrand, 1988: Short-range evolution of small perturbations in a barotropic model. Tellus A, 40, 81–95, doi: 10.1111/j.1600-0870.1988.tb00408.x.

Li, J. P., and R. Q. Ding, 2008: Temporal-spatial distributions of predictability limit of short-term climate. Chinese Journal of Atmospheric Sciences, 32, 975–986. (in Chinese)

Li, J. P., and R. Q. Ding, 2011: Temporal-spatial distribution of atmospheric predictability limit by local dynamical analogs. Mon. Wea. Rev., 139, 3265–3283, doi: 10.1175/MWR-D-10-05020.1.

Li, J. P., and R. Q. Ding, 2013: Temporal–spatial distribution of the predictability limit of monthly sea surface temperature in the global oceans. Int. J. Climatol., 33, 1936–1947, doi: 10.1002/joc.3562.

Li, Y. X., W. K. S. Tang, and G. R. Chen, 2005: Hyperchaos evolved from the generalized Lorenz equation. International Journal of Circuit Theory and Applications, 33, 235–251, doi: 10.1002/cta.318.

Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141, doi: 10.1175/1520-0469(1963)020〈0130: DNF〉2.0.CO;2.

Lorenz, E. N., 1996: Predictability: A problem partly solved. Proc. Seminar on predictability. Vol.1, No.1. Reading, United Kingdom, ECMWF, 1–18.

Mu, M., and W. S. Duan, 2003: A new approach to studying ENSO predictability: Conditional nonlinear optimal perturbation. Chinese Science Bulletin, 48, 1045–1047, doi: 10.1007/BF 03184224.

Nese, J. M., 1989: Quantifying local predictability in phase space. Physica D: Nonlinear Phenomena, 35, 237–250, doi: 10.1016/0167-2789(89)90105-X.

Norwood, A., E. Kalnay, K. Ide, S. C. Yang, and C. Wolfe, 2013: Lyapunov, singular and bred vectors in a multi-scale system: An empirical exploration of vectors related to instabilities. Journal of Physics A: Mathematical and Theoretical, 46, 254021, doi: 10.1088/1751-8113/46/25/254021.

Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317–2330, doi: 10.1175/1520-0477(1993)074〈2317: EFANTG〉2.0.CO;2.

Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 3297–3319, doi: 10.1175/1520-0493(1997)125〈3297:EFANAT〉2.0.CO;2.

Trevisan, A., and R. Legnani, 1995: Transient error growth and local predictability: A study in the Lorenz system. Tellus A, 47, 103–117, doi: 10.1034/j.1600-0870.1995.00006.x.

Wang, F. Q., and C. X. Liu, 2006: Synchronization of hyperchaotic Lorenz system based on passive control. Chinese Physics, 15, 1971, doi: 10.1088/1009-1963/15/9/012.

Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano, 1985: Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 16, 285–317, doi: 10.1016/0167-2789(85)90011-9.

Yoden, S., and M. Nomura, 1993: Finite-time Lyapunov stability analysis and its application to atmospheric predictability. J. Atmos. Sci., 50, 1531–1543, doi: 10.1175/1520-0469(1993) 050〈1531:FTLSAA〉2.0.CO;2.

Ziehmann, C., L. A. Smith, and J. Kurths, 2000: Localized Lyapunov exponents and the prediction of predictability. Physics Letters A, 271, 237–251, doi: 10.1016/S0375-9601(00)00336-4.