Determining influences of SiO2 encapsulation on thermal energy storage properties of different phase change materials

Solar Energy Materials and Solar Cells - Tập 159 - Trang 1-7 - 2017
Nurten Şahan1, Halime Paksoy1
1Çukurova University, Chemistry Department, Adana 01330, Turkey

Tài liệu tham khảo

Fang, 2010, Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials, Chem. Eng. J., 163, 154, 10.1016/j.cej.2010.07.054 Mazman, 2009, Utilization of phase change materials in solar domestic hot water systems, Renew. Energy, 34, 1639, 10.1016/j.renene.2008.10.016 Benli, 2009, Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating, Sol. Energy, 83, 2109, 10.1016/j.solener.2009.07.005 Tan, 2004, Cooling of mobile electronic devices using phase change materials, Appl. Therm. Eng., 24, 159, 10.1016/j.applthermaleng.2003.09.005 Alay, 2011, Synthesis and thermal properties of poly (n-butyl acrylate)/n-hexadecane microcapsules using different cross-linkers and their application to textile fabrics, J. Appl. Polym. Sci., 120, 2821, 10.1002/app.33266 Soares, 2013, Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency, Energy Build., 59, 82, 10.1016/j.enbuild.2012.12.042 Gil, 2014, Experimental analysis of hydroquinone used as phase change material (PCM) to be applied in solar cooling refrigeration, Int. J. Refrig., 39, 95, 10.1016/j.ijrefrig.2013.05.013 Wang, 2015, An experimental study on the formation behavior of single and binary hydrates of TBAB, TBAF and TBPB for cold storage air conditioning applications, Chem. Eng. Sci., 137, 938, 10.1016/j.ces.2015.07.042 Johnston, 2008, Composite nano-structured calcium silicate phase change materials for thermal buffering in food packaging, Curr. Appl. Phys., 8, 508, 10.1016/j.cap.2007.10.059 Ohkawara, 2012, Developed container for safe, easy, and cost-effective overnight transportation of tissues and organs by electrically keeping tissue or organ temperature at 3 to 6°C, Transplant. Proc., 855, 10.1016/j.transproceed.2012.02.023 C. Lachenbruch, R. Barnett, Heating or cooling pad or glove with phase change material, in, Google Patents, 2001 Şahan, 2016, The effects of various carbon derivative additives on the thermal properties of paraffin as a phase change material, Int. J. Energy Res., 40, 198, 10.1002/er.3449 Pielichowska, 2014, Phase change materials for thermal energy storage, Prog. Mater. Sci., 65, 67, 10.1016/j.pmatsci.2014.03.005 Suppes, 2003, Latent heat characteristics of fatty acid derivatives pursuant phase change material applications, Chem. Eng. Sci., 58, 1751, 10.1016/S0009-2509(03)00006-X Sarı, 2007, Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material, Appl. Therm. Eng., 27, 1271, 10.1016/j.applthermaleng.2006.11.004 Li, 2016, Preparation of paraffin/porous TiO 2 foams with enhanced thermal conductivity as PCM, by covering the TiO2 surface with a carbon layer, Appl. Energy, 171, 37, 10.1016/j.apenergy.2016.03.010 Zong, 2015, Fabrication and characterization of electrospun SiO2 nanofibers absorbed with fatty acid eutectics for thermal energy storage/retrieval, Sol. Energy Mater. Sol. Cells, 132, 183, 10.1016/j.solmat.2014.08.030 N’Tsoukpoe, 2009, A review on long-term sorption solar energy storage, Renew. Sustain. Energy Rev., 13, 2385, 10.1016/j.rser.2009.05.008 Sarı, 2016, Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials, Energy Convers. Manag., 117, 132, 10.1016/j.enconman.2016.02.078 Cao, 2006, Hyperbranched polyurethane as novel solid–solid phase change material for thermal energy storage, Eur. Polym. J., 42, 2931, 10.1016/j.eurpolymj.2006.07.020 Li, 2007, Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid–solid phase change heat storage material, Sol. Energy Mater. Sol. Cells, 91, 764, 10.1016/j.solmat.2007.01.011 Sarı, 2011, Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acid copolymers as solid–solid phase change materials, Sol. Energy Mater. Sol. Cells, 95, 3195, 10.1016/j.solmat.2011.07.003 Liu, 2015, Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement, Nano Energy, 13, 814, 10.1016/j.nanoen.2015.02.016 Jamekhorshid, 2014, A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium, Renew. Sustain. Energy Rev., 31, 531, 10.1016/j.rser.2013.12.033 Neila González, 2008, Phase change materials (PCMs) for energy storage in architecture. Use with the magic box prototype, Mater. Constr., 58, 119 Giraud, 2010, Influence of chemical shell structure on the thermal properties of microcapsules containing a flame retardant agent, Polym. Degrad. Stab., 95, 315, 10.1016/j.polymdegradstab.2009.11.018 Zhang, 2010, Silica encapsulation of n-octadecane via sol–gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance, J. Colloid Interface Sci., 343, 246, 10.1016/j.jcis.2009.11.036 Jiang, 2014, Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4/SiO2 hybrid shell for dual-functional phase change materials, Appl. Energy, 134, 456, 10.1016/j.apenergy.2014.08.061 Cao, 2014, Preparation and characteristics of microencapsulated palmitic acid with TiO2 shell as shape-stabilized thermal energy storage materials, Sol. Energy Mater. Sol. Cells, 123, 183, 10.1016/j.solmat.2014.01.023 Yu, 2014, Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation, Appl. Energy, 114, 632, 10.1016/j.apenergy.2013.10.029 Pierre, 2004, The sol-gel encapsulation of enzymes, Biocatal. Biotransformation, 22, 145, 10.1080/10242420412331283314 Sousa, 2014, Encapsulation of essential oils in SiO2 microcapsules and release behaviour of volatile compounds, J. Microencapsul., 31, 627, 10.3109/02652048.2014.911376 Chen, 2010, Core/shell structured hollow mesoporous nanocapsules: A potential platform for simultaneous cell imaging and anticancer drug delivery, ACS Nano, 4, 6001, 10.1021/nn1015117 Kumar, 2013, Synthesis of mesoporous SiO2–ZnO nanocapsules: encapsulation of small biomolecules for drugs and “SiOZO-plex” for gene delivery, J. Nanopart. Res., 15, 1, 10.1007/s11051-013-1904-y Li, 2013, Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage, ACS Sustain. Chem. Eng., 1, 374, 10.1021/sc300082m Klančnik, 2010, Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) as a method of material investigation Diferenčna termična analiza (DTA) in diferenčna vrstična kalorimetrija (DSC) kot metoda za raziskavo materialov, RMZ–Mater. Geoenviron., 57, 127 Kang, 2015, Core–shell polymeric microcapsules with superior thermal and solvent stability, ACS Appl. Mater. Interfaces, 7, 10952, 10.1021/acsami.5b02169 Paksoy, 2012, Thermally enhanced paraffin for solar applications, Energy Procedia, 30, 350, 10.1016/j.egypro.2012.11.041 Chen, 2013, Preparation and characteristics of microencapsulated stearic acid as composite thermal energy storage material in buildings, Energy Build., 62, 469, 10.1016/j.enbuild.2013.03.025