Determining cooling rates from mica 40Ar/39Ar thermochronology data: Effect of cooling path shape

Terra Nova - Tập 31 Số 3 - Trang 234-246 - 2019
Christopher S. McDonald1,2, Clare Warren2, Felix Hanke3, Julian Chard4
1School for Earth and Space Exploration, Arizona State University, Tempe, Arizona
2School of Environment, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes, UK
3Dassault Systèmes Cambridge UK
4School of Earth and Planetary Sciences, The Institute for Geoscience Research (TIGeR), Curtin University, Perth, WA, Australia

Tóm tắt

AbstractTectonic models are commonly underpinned by metamorphic cooling rates derived from diffusive‐loss thermochronology data. Such cooling ages are usually linked to temperature via Dodson's closure temperature (TC) formulation, which specifies a 1/time‐shaped cooling path (Contributions to Mineralogy and Petrology, 1973, 40, 259). Geologists, however, commonly discuss cooling rates as a linear temperature/time shape. We present the results of a series of simple finite‐difference diffusion models for Ar diffusion in muscovite and biotite that show that the difference in recorded age between 1/t and linear cooling paths increases significantly with hotter starting temperatures, slower cooling rates and smaller grain sizes. Our results show that it is essential to constrain the cooling path shape in order to make meaningful interpretations of the measured data.

Từ khóa


Tài liệu tham khảo

10.1093/petrology/egq100

10.2113/gselements.9.1.15

10.1007/BF00373790

10.1029/TC009i003p00467

Forster M. A., 2017, Advances in 40Ar/39Ar dating: From Archaeology to Planetary Sciences, 117

10.1029/2011JB008825

10.1016/S0012-821X(99)00089-8

10.1007/978-1-4419-0346-4_5

10.1016/0012-821X(94)00079-4

10.1016/j.gca.2008.09.038

10.1016/0016-7037(85)90246-7

10.1016/j.gca.2011.01.039

10.1016/0016-7037(94)90103-1

10.2138/rmg.2005.58.11

Kohn M. J., 2017, Petrochronology: Methods and applications, Reviews in Mineralogy, 83, 575

10.1016/j.gca.2008.03.018

10.1016/j.lithos.2017.11.028

10.1016/j.chemgeo.2016.09.028

10.2138/rmg.2005.58.1

10.1016/S0016-7037(99)00116-7

10.1016/j.chemgeo.2018.07.003

10.1016/0012-821X(70)90049-X

10.1016/j.epsl.2017.12.031

10.1046/j.1365-3121.1998.00156.x

10.1093/petrology/egu007

10.1016/j.chemgeo.2011.09.017

10.1016/j.lithos.2012.08.011

10.1144/SP378.13

10.1016/S0098-3004(96)00061-1