Determination of the poles of the topological zeta function for curves

Willem Veys1
1Department Wiskunde, Leuven, Belgium

Tóm tắt

Từ khóa


Tài liệu tham khảo

[D1] J. Denef:On the degree of Igusa’s local zeta function, Amer. J. Math.109 (1987), 991–1008

[D2] J. Denef:Report on Igusa’s local zeta function, Sém. Bourbaki 741, Astérisque201/202/203 (1991), 359–386

[D-L] J. Denef and F. Loeser,Caractéristiques d’Euler-Poincaré, fonctions zeta locales, et modifications analytiques, J. Amer. Math. Soc.5, 4 (1992), 705–720

[I1] J. Igusa:Complex powers and asymptotic expansions I, J. Reine Angew. Math.268/269 (1974), 110–130;II, ibid.278/279 (1975), 307–321

[I2] J. Igusa,Complex powers of irreducible algebroid curves, in “Geometry today, Roma 1984”, Progress in Mathematics60 (1985), Birkhäuser, 207–230

[L1] F. Loeser:Fonctions d’Igusa p-adiques et polynômes de Bernstein, Amer. J. Math.110 (1988), 1–22

[L2] F. Loeser:Fonctions d’Igusa p-adiques, polynômes de Bernstein, et polyèdres de Newton, J. reine angew. Math.412 (1990), 75–96

[M] D. Meuser:On the poles of a local zeta function for curves, Invent. Math.73 (1983), 445–465

[S] L. Strauss:Poles of a two variable p-adic complex power, Trans. Amer. Math. Soc.278, 2 (1983), 481–493

[V1] W. Veys:On the poles of Igusa’s local zeta function for curves, J. London Math. Soc.41, 2 (1990), 27–32

[V2] W. Veys,Relations between numerical data of an embedded resolution, Amer. J. Math.113 (1991), 573–592

[V3] W. Veys,Numerical data of resolutions of singularities and Igusa’s local zeta function, Ph. D. thesis, Univ. Leuven, 1991

[V4] W. Veys,Poles of Igusa’s local zeta function and monodromy, Bull. Soc. Math. France121 (1993), 545–598